A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference.

The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models.

Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book's web page.
Smoothing Splines
Methods and Applications
MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY

General Editors

F. Bunea, V. Isham, N. Keiding, T. Louis, R. L. Smith, and H. Tong

1 Stochastic Population Models in Ecology and Epidemiology M.S. Barlett (1960)
2 Queues D.R. Cox and W.L. Smith (1961)
3 Monte Carlo Methods J.M. Hammersley and D.C. Handscomb (1964)
5 Population Genetics W.J. Ewens (1969)
6 Probability, Statistics and Time M.S. Barlett (1975)
7 Statistical Inference S.D. Silvey (1975)
8 The Analysis of Contingency Tables B.S. Everitt (1977)
9 Multivariate Analysis in Behavioural Research A.E. Maxwell (1977)
10 Stochastic Abundance Models S. Engen (1978)
12 Point Processes D.R. Cox and V. Isham (1980)
14 Optimal Design S.D. Silvey (1980)
15 Finite Mixture Distributions B.S. Everitt and D.J. Hand (1981)
16 Classification A.D. Gordon (1981)
18 Residuals and Influence in Regression R.D. Cook and S. Weisberg (1982)
23 Bandit Problems D.A. Berry and B. Fristedt (1985)
24 Stochastic Modelling and Control M.H.A. Davis and R. Vinter (1985)
26 Density Estimation for Statistics and Data Analysis B.W. Silverman (1986)
27 Regression Analysis with Applications G.B. Wetherill (1986)
30 Transformation and Weighting in Regression R.G. Carroll and D. Ruppert (1988)
33 Analysis of Infectious Disease Data N.G. Becker (1989)
34 Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)
36 Symmetric Multivariate and Related Distributions K.T. Fang, S. Kotz and K.W. Ng (1990)
40 Subset Selection in Regression A.J. Miller (1990)
41 Analysis of Repeated Measures M.J. Crowder and D.J. Hand (1990)
42 Statistical Reasoning with Imprecise Probabilities P. Walley (1991)
44 Inspection Errors for Attributes in Quality Control N.L. Johnson, S. Kotz and X. Wu (1991)
45 The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)
46 The Analysis of Quantal Response Data B.J.T. Morgan (1992)
49 Markov Models and Optimization M.H.A. Davis (1993)
52 Inference and Asymptotics O.E. Barndorff-Nielsen and D.R. Cox (1994)
54 Biplots J.C. Gower and D.J. Hand (1996)
55 Predictive Inference—An Introduction S. Geisser (1993)
58 Nonparametric Regression and Generalized Linear Models P.J. Green and B.W. Silverman (1994)
59 Multidimensional Scaling T.F. Cox and M.A.A. Cox (1994)
64 Analyzing and Modeling Rank Data J.J. Marden (1995)
68 Statistical Inference—Based on the Likelihood A. Azzalini (1996)
72 Analysis of Incomplete Multivariate Data J.L. Schafer (1997)
73 Multivariate Models and Dependence Concepts H. Joe (1997)
75 Retrial Queues G. Falin and J.G.C. Templeton (1997)
77 Mixed Poisson Processes J. Grandell (1997)
82 Classification, 2nd edition A.D. Gordon (1999)
83 Semimartingales and their Statistical Inference B.L.S. Prakasa Rao (1999)
85 Set-Indexed Martingales G. Ivanoff and E. Merzbach (2000)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors and Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Analysis of Time Series Structure—SSA and Related Techniques</td>
<td>N. Golyandina, V. Nekrutkin and A.A. Zhigljavsky (2001)</td>
</tr>
<tr>
<td>91</td>
<td>Subjective Probability Models for Lifetimes</td>
<td>Fabio Spizzichino (2001)</td>
</tr>
<tr>
<td>92</td>
<td>Empirical Likelihood</td>
<td>Art B. Owen (2001)</td>
</tr>
<tr>
<td>93</td>
<td>Statistics in the 21st Century</td>
<td>Adrian E. Raftery, Martin A. Tanner, and Martin T. Wells (2001)</td>
</tr>
<tr>
<td>96</td>
<td>Topics in Modelling of Clustered Data</td>
<td>Marc Aerts, Helena Geys, Geert Molenberghs, and Louise M. Ryan (2002)</td>
</tr>
<tr>
<td>102</td>
<td>Diagnostic Checks in Time Series</td>
<td>Wai Keung Li (2004)</td>
</tr>
<tr>
<td>103</td>
<td>Stereology for Statisticians</td>
<td>Adrian Baddeley and Eva B. Vedel Jensen (2004)</td>
</tr>
<tr>
<td>109</td>
<td>Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis</td>
<td>Michael J. Daniels and Joseph W. Hogan (2008)</td>
</tr>
<tr>
<td>111</td>
<td>ROC Curves for Continuous Data</td>
<td>Lang Wu (2010)</td>
</tr>
<tr>
<td>112</td>
<td>Antedependence Models for Longitudinal Data</td>
<td>Lang Wu (2010)</td>
</tr>
<tr>
<td>114</td>
<td>Introduction to Time Series Modeling</td>
<td>Genshiro Kitagawa (2010)</td>
</tr>
<tr>
<td>117</td>
<td>Circular and Linear Regression: Fitting Circles and Lines by Least Squares</td>
<td>Nikolai Chernov (2010)</td>
</tr>
<tr>
<td>118</td>
<td>Simultaneous Inference in Regression</td>
<td>Wei Liu (2010)</td>
</tr>
<tr>
<td>119</td>
<td>Robust Nonparametric Statistical Methods, Second Edition</td>
<td>Thomas P. Hettmansperger and Joseph W. McKean (2011)</td>
</tr>
<tr>
<td>120</td>
<td>Statistical Inference: The Minimum Distance Approach</td>
<td>Ayanendranath Basu, Hiroyuki Shioya, and Chanseok Park (2011)</td>
</tr>
<tr>
<td>121</td>
<td>Smoothing Splines: Methods and Applications</td>
<td>Yuedong Wang (2011)</td>
</tr>
</tbody>
</table>
Smoothing Splines
Methods and Applications

Yuedong Wang
University of California
Santa Barbara, California, USA
TO

YAN, CATHERINE, AND KEVIN
Contents

1 Introduction 1
 1.1 Parametric and Nonparametric Regression 1
 1.2 Polynomial Splines 4
 1.3 Scope of This Book 7
 1.4 The assist Package 9

2 Smoothing Spline Regression 11
 2.1 Reproducing Kernel Hilbert Space 11
 2.2 Model Space for Polynomial Splines 14
 2.3 General Smoothing Spline Regression Models 16
 2.4 Penalized Least Squares Estimation 17
 2.5 The ssr Function 20
 2.6 Another Construction for Polynomial Splines 22
 2.7 Periodic Splines 24
 2.8 Thin-Plate Splines 26
 2.9 Spherical Splines 29
 2.10 Partial Splines 30
 2.11 L-splines ... 39
 2.11.1 Motivation 39
 2.11.2 Exponential Spline 41
 2.11.3 Logistic Spline 44
 2.11.4 Linear-Periodic Spline 46
 2.11.5 Trigonometric Spline 48

3 Smoothing Parameter Selection and Inference 53
 3.1 Impact of the Smoothing Parameter 53
 3.2 Trade-Offs .. 57
 3.3 Unbiased Risk 62
 3.4 Cross-Validation and Generalized Cross-Validation .. 64
 3.5 Bayes and Linear Mixed-Effects Models 67
 3.6 Generalized Maximum Likelihood 71
 3.7 Comparison and Implementation 72
 3.8 Confidence Intervals 75
 3.8.1 Bayesian Confidence Intervals 75
 3.8.2 Bootstrap Confidence Intervals 81
4 Smoothing Spline ANOVA

4.1 Multiple Regression .. 91
4.2 Tensor Product Reproducing Kernel Hilbert Spaces 92
4.3 One-Way SS ANOVA Decomposition 93
 4.3.1 Decomposition of \(\mathbb{R}^a\): One-Way ANOVA 95
 4.3.2 Decomposition of \(W_2^m[a,b]\) 96
 4.3.3 Decomposition of \(W_2^m(\text{per})\) 97
 4.3.4 Decomposition of \(W_2^m(\mathbb{R}^d)\) 97
4.4 Two-Way SS ANOVA Decomposition 98
 4.4.1 Decomposition of \(\mathbb{R}^a \otimes \mathbb{R}^b\): Two-Way ANOVA .. 99
 4.4.2 Decomposition of \(\mathbb{R}^a \otimes W_2^m[0,1]\) 100
 4.4.3 Decomposition of \(W_2^m[0,1] \otimes W_2^{m^2}[0,1]\) 103
 4.4.4 Decomposition of \(\mathbb{R}^a \otimes W_2^m(\text{per})\) 106
 4.4.5 Decomposition of \(W_2^m(\text{per}) \otimes W_2^m[0,1]\) 107
 4.4.6 Decomposition of \(W_2^2(\mathbb{R}^2) \otimes W_2^m(\text{per})\) 108
4.5 General SS ANOVA Decomposition 110
4.6 SS ANOVA Models and Estimation 111
4.7 Selection of Smoothing Parameters 114
4.8 Confidence Intervals ... 116
4.9 Examples ... 117
 4.9.1 Tongue Shapes ... 117
 4.9.2 Ozone in Arosa — Revisit 126
 4.9.3 Canadian Weather — Revisit 131
 4.9.4 Texas Weather ... 133

5 Spline Smoothing with Heteroscedastic and/or Correlated Errors

5.1 Problems with Heteroscedasticity and Correlation 139
5.2 Extended SS ANOVA Models 142
 5.2.1 Penalized Weighted Least Squares 142
 5.2.2 UBR, GCV and GML Criteria 144
 5.2.3 Known Covariance .. 147
 5.2.4 Unknown Covariance 148
 5.2.5 Confidence Intervals 150
5.3 Variance and Correlation Structures 150
5.4 Examples ... 153
5.4.1 Simulated Motorcycle Accident — Revisit 153
5.4.2 Ozone in Arosa — Revisit 154
5.4.3 Beveridge Wheat Price Index 157
5.4.4 Lake Acidity . 158

6 Generalized Smoothing Spline ANOVA 163
6.1 Generalized SS ANOVA Models 163
6.2 Estimation and Inference 164
 6.2.1 Penalized Likelihood Estimation 164
 6.2.2 Selection of Smoothing Parameters 167
 6.2.3 Algorithm and Implementation 168
 6.2.4 Bayes Model, Direct GML and Approximate
 Bayesian Confidence Intervals 170
6.3 Wisconsin Epidemiological Study of Diabetic
 Retinopathy . 172
6.4 Smoothing Spline Estimation of Variance Functions . . 176
6.5 Smoothing Spline Spectral Analysis 182
 6.5.1 Spectrum Estimation of a Stationary Process . . . 182
 6.5.2 Time-Varying Spectrum Estimation of a Locally
 Stationary Process 183
 6.5.3 Epileptic EEG . 185

7 Smoothing Spline Nonlinear Regression 195
7.1 Motivation . 195
7.2 Nonparametric Nonlinear Regression Models 196
7.3 Estimation with a Single Function 197
 7.3.1 Gauss–Newton and Newton–Raphson Methods . . 197
 7.3.2 Extended Gauss–Newton Method 199
 7.3.3 Smoothing Parameter Selection and Inference . . 201
7.4 Estimation with Multiple Functions 204
7.5 The nnr Function . 205
7.6 Examples . 206
 7.6.1 Nonparametric Regression Subject to Positive
 Constraint . 206
 7.6.2 Nonparametric Regression Subject to Monotone
 Constraint . 207
 7.6.3 Term Structure of Interest Rates 212
 7.6.4 A Multiplicative Model for Chickenpox Epidemic 218
 7.6.5 A Multiplicative Model for Texas Weather 223
xii

8 Semiparametric Regression 227
 8.1 Motivation ... 227
 8.2 Semiparametric Linear Regression Models 228
 8.2.1 The Model 228
 8.2.2 Estimation and Inference 229
 8.2.3 Vector Spline 233
 8.3 Semiparametric Nonlinear Regression Models 240
 8.3.1 The Model 240
 8.3.2 SNR Models for Clustered Data 241
 8.3.3 Estimation and Inference 242
 8.3.4 The snr Function 245
 8.4 Examples .. 247
 8.4.1 Canadian Weather — Revisit 247
 8.4.2 Superconductivity Magnetization Modeling 254
 8.4.3 Oil-Bearing Rocks 257
 8.4.4 Air Quality 259
 8.4.5 The Evolution of the Mira Variable R Hydrae 262
 8.4.6 Circadian Rhythm 267

9 Semiparametric Mixed-Effects Models 273
 9.1 Linear Mixed-Effects Models 273
 9.2 Semiparametric Linear Mixed-Effects Models 274
 9.2.1 The Model 274
 9.2.2 Estimation and Inference 275
 9.2.3 The slm Function 279
 9.2.4 SS ANOVA Decomposition 280
 9.3 Semiparametric Nonlinear Mixed-Effects Models 283
 9.3.1 The Model 283
 9.3.2 Estimation and Inference 284
 9.3.3 Implementation and the snm Function 286
 9.4 Examples .. 288
 9.4.1 Ozone in Arosa — Revisit 288
 9.4.2 Lake Acidity — Revisit 291
 9.4.3 Coronary Sinus Potassium in Dogs 294
 9.4.4 Carbon Dioxide Uptake 305
 9.4.5 Circadian Rhythm — Revisit 310

A Data Sets 323
 A.1 Air Quality Data 324
 A.2 Arosa Ozone Data 324
 A.3 Beveridge Wheat Price Index Data 324
 A.4 Bond Data .. 324
 A.5 Canadian Weather Data 325
A.6 Carbon Dioxide Data 325
A.7 Chickenpox Data 325
A.8 Child Growth Data 326
A.9 Dog Data 326
A.10 Geyser Data 326
A.11 Hormone Data 327
A.12 Lake Acidity Data 327
A.13 Melanoma Data 327
A.14 Motorcycle Data 328
A.15 Paramecium caudatum Data 328
A.16 Rock Data 328
A.17 Seizure Data 328
A.18 Star Data 329
A.19 Stratford Weather Data 329
A.20 Superconductivity Data 329
A.21 Texas Weather Data 330
A.22 Ultrasound Data 330
A.23 USA Climate Data 331
A.24 Weight Loss Data 331
A.25 WESDR Data 331
A.26 World Climate Data 332

B Codes for Fitting Strictly Increasing Functions 333
 B.1 C and R Codes for Computing Integrals 333
 B.2 R Function inc 336

C Codes for Term Structure of Interest Rates 339
 C.1 C and R Codes for Computing Integrals 339
 C.2 R Function for One Bond 341
 C.3 R Function for Two Bonds 342

References 347
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Bases of null spaces and RKs for linear and cubic splines under the construction in Section 2.2 with $\mathcal{X} = [0, b]$</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Bases of null spaces and RKs for linear and cubic splines under the construction in Section 2.6 with $\mathcal{X} = [0, 1]$</td>
<td>23</td>
</tr>
<tr>
<td>5.1</td>
<td>Standard \texttt{varFunc} classes</td>
<td>151</td>
</tr>
<tr>
<td>5.2</td>
<td>Standard \texttt{corStruct} classes for serial correlation structures</td>
<td>152</td>
</tr>
<tr>
<td>5.3</td>
<td>Standard \texttt{corStruct} classes for spatial correlation structures</td>
<td>153</td>
</tr>
<tr>
<td>A.1</td>
<td>List of all data sets</td>
<td>323</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Geyser data, observations, the straight line fit, and residuals ... 2
1.2 Motorcycle data, observations, and a polynomial fit ... 2
1.3 Geyser data, residuals, and the cubic spline fits ... 3
1.4 Motorcycle data, observations, and the cubic spline fit ... 4
1.5 Relationship between functions in the \texttt{assist} package and some of the existing R functions .. 10
2.1 Motorcycle data, the linear, and cubic spline fits ... 22
2.2 Arosa data, observations, and the periodic spline fits ... 25
2.3 USA climate data, the thin-plate spline fit ... 28
2.4 World climate data, the spherical spline fit .. 31
2.5 Geyser data, the partial spline fit, residuals, and the AIC and GCV scores 33
2.6 Motorcycle data, the partial spline fit, and the AIC and GCV scores ... 34
2.7 Arosa data, the partial spline estimates of the month and year effects ... 36
2.8 Canadian weather data, estimate of the weight function, and confidence intervals 38
2.9 Weight loss data, observations and the nonlinear regression, cubic spline, and exponential spline fits ... 43
2.10 Paramecium caudatum data, observations and the nonlinear regression, cubic spline, and logistic spline fits ... 45
2.11 Melanoma data, observations, and the cubic spline and linear-periodic spline fits 48
2.12 Arosa data, the overall fits and their projections .. 51
3.1 Stratford weather data, observations, and the periodic spline fits with different smoothing parameters ... 54
3.2 Weights of the periodic spline filter ... 57
3.3 Stratford data, degrees of freedom, and residual sum of squares .. 59
3.4 Squared bias, variance, and MSE from a simulation ... 61
3.5 PSE and UBR functions .. 65
3.6 PSE, CV, and GCV functions 68
3.7 Geyser data, estimates of the smooth components in the cubic and partial spline models 79
3.8 Motorcycle data, partial spline fit, and t-statistics 80
3.9 Pointwise coverages and across-the-function coverages 83
4.1 Ultrasound data, 3-d plots of observations 93
4.2 Ultrasound data, observations, fits, confidence intervals, and the mean curves among three environments 118
4.3 Ultrasound data, the overall interaction 119
4.4 Ultrasound data, effects of environment 120
4.5 Ultrasound data, estimated tongue shapes as functions of length and time 122
4.6 Ultrasound data, the estimated time effect 123
4.7 Ultrasound data, estimated tongue shape as a function of environment, length, and time 125
4.8 Ultrasound data, the estimated environment effect 126
4.9 Arosa data, estimates of the interactions and smooth component 128
4.10 Arosa data, estimates of the main effects 129
4.11 Canadian weather data, temperature profiles of stations in four regions and the estimated profiles 132
4.12 Canadian weather data, the estimated region effects to temperature 134
4.13 Texas weather data, observations as curves 135
4.14 Texas weather data, observations as surfaces 135
4.15 Texas weather data, the location effects for four selected stations 137
4.16 Texas weather data, the month effects for January, April, July, and October 138
5.1 WMSEs and coverages of Bayesian confidence intervals with the presence of heteroscedasticity 140
5.2 Cubic spline fits when data are correlated 141
5.3 Cubic spline fits and estimated autocorrelation functions for two simulations 149
5.4 Motorcycle data, estimates of the mean and variance functions 154
5.5 Arosa data, residuals variances and PWLS fit 155
5.6 Beveridge data, time series and cubic spline fits 157
5.7 Lake acidity data, effects of calcium and geological location 160
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>WESDR data, the estimated probability functions</td>
<td>176</td>
</tr>
<tr>
<td>6.2</td>
<td>Motorcycle data, estimates of the variance function based on three procedures</td>
<td>178</td>
</tr>
<tr>
<td>6.3</td>
<td>Motorcycle data, DGML function, and estimate of the variance and mean functions</td>
<td>182</td>
</tr>
<tr>
<td>6.4</td>
<td>Seizure data, the baseline and preseizure IEEG segments</td>
<td>186</td>
</tr>
<tr>
<td>6.5</td>
<td>Seizure data, periodograms, estimates of the spectra based on the iterative UBR method and confidence intervals</td>
<td>187</td>
</tr>
<tr>
<td>6.6</td>
<td>Seizure data, estimates of the time-varying spectra based on the iterative UBR method</td>
<td>189</td>
</tr>
<tr>
<td>6.7</td>
<td>Seizure data, estimates of the time-varying spectra based on the DGML method</td>
<td>192</td>
</tr>
<tr>
<td>7.1</td>
<td>Nonparametric regression under positivity constraint</td>
<td>207</td>
</tr>
<tr>
<td>7.2</td>
<td>Nonparametric regression under monotonicity constraint</td>
<td>210</td>
</tr>
<tr>
<td>7.3</td>
<td>Child growth data, cubic spline fit, fit under monotonicity constraint and estimate of the velocity</td>
<td>210</td>
</tr>
<tr>
<td>7.4</td>
<td>Bond data, unconstrained and constrained estimates of the discount functions, forward rates and credit spread</td>
<td>214</td>
</tr>
<tr>
<td>7.5</td>
<td>Chickenpox data, time series plot and the fits by multiplicative and SS ANOVA models</td>
<td>219</td>
</tr>
<tr>
<td>7.6</td>
<td>Chickenpox data, estimates of the mean and amplitude functions in the multiplicative model</td>
<td>222</td>
</tr>
<tr>
<td>7.7</td>
<td>Chickenpox data, estimates of the shape function in the multiplicative model and its projections</td>
<td>222</td>
</tr>
<tr>
<td>7.8</td>
<td>Texas weather data, estimates of the mean and amplitude functions in the multiplicative model</td>
<td>224</td>
</tr>
<tr>
<td>7.9</td>
<td>Texas weather data, temperature profiles</td>
<td>225</td>
</tr>
<tr>
<td>7.10</td>
<td>Texas weather data, the estimated interaction against the estimated main effect for two stations</td>
<td>226</td>
</tr>
<tr>
<td>8.1</td>
<td>Separate and joint fits from a simulation</td>
<td>236</td>
</tr>
<tr>
<td>8.2</td>
<td>Estimates of the differences</td>
<td>238</td>
</tr>
<tr>
<td>8.3</td>
<td>Canadian weather data, estimated region effects to precipitation</td>
<td>249</td>
</tr>
<tr>
<td>8.4</td>
<td>Canadian weather data, estimate of the coefficient function for the temperature effect</td>
<td>249</td>
</tr>
<tr>
<td>8.5</td>
<td>Canadian weather data, estimates of the intercept and weight functions</td>
<td>253</td>
</tr>
<tr>
<td>8.6</td>
<td>Superconductivity data, observations, and the fits by nonlinear regression, cubic spline, nonlinear partial spline, and L-spline</td>
<td>254</td>
</tr>
</tbody>
</table>
8.7 Superconductivity data, estimates of departures from the straight line model and the “interpolation formula” 256
8.8 Rock data, estimates of functions in the projection pursuit regression model 259
8.9 Air quality data, estimates of functions in SNR models 261
8.10 Star data, observations, and the overall fit 262
8.11 Star data, folded observations, estimates of the common shape function and its projection 264
8.12 Star data, estimates of the amplitude and period functions 266
8.13 Hormone data, cortisol concentrations for normal subjects and the fits based on an SIM 268
8.14 Hormone data, estimate of the common shape function in an SIM and its projection for normal subjects 270

9.1 Arosa data, the overall fit, seasonal trend, and long-term trend 290
9.2 Arosa data, the overall fit, seasonal trend, long-term trend and local stochastic trend 292
9.3 Lake acidity data, effects of calcium and geological location 294
9.4 Dog data, coronary sinus potassium concentrations over time 295
9.5 Dog data, estimates of the group mean response curves 302
9.6 Dog data, estimates of the group mean response curves under new penalty 304
9.7 Dog data, predictions for four dogs 305
9.8 Carbon dioxide data, observations and fits by the NLME and SNM models 307
9.9 Carbon dioxide data, overall estimate and projections of the nonparametric shape function 309
9.10 Hormone data, cortisol concentrations for normal subjects, and the fits based on a mixed-effects SIM 312
9.11 Hormone data, cortisol concentrations for depressed subjects, and the fits based on a mixed-effects SIM 313
9.12 Hormone data, cortisol concentrations for subjects with Cushing’s disease, and the fits based on a mixed-effects SIM 314
9.13 Hormone data, estimates of the common shape functions in the mixed-effect SIM 315
9.14 Hormone data, plot of the estimated 24-hour mean levels against amplitudes 321
Symbol Description

\((x)_+\) \hspace{1cm} \max\{x, 0\}
\(x \wedge z\) \hspace{1cm} \min\{x, z\}
\(x \vee z\) \hspace{1cm} \max\{x, z\}
\(\det^+\) \hspace{1cm} \text{Product of the nonzero eigenvalues}
\(k_r(x)\) \hspace{1cm} \text{Scaled Bernoulli polynomials}
\((\cdot, \cdot)\) \hspace{1cm} \text{Inner product}
\(\| \cdot \|:\) \hspace{1cm} \text{Norm}
\(\mathcal{X}\) \hspace{1cm} \text{Domain of a function}
\(\mathcal{S}\) \hspace{1cm} \text{Unit sphere}
\(\mathcal{H}\) \hspace{1cm} \text{Function space}
\(\mathcal{L}\) \hspace{1cm} \text{Linear functional}
\(\mathcal{N}\) \hspace{1cm} \text{Nonlinear functional}
\(\mathcal{P}\) \hspace{1cm} \text{Projection}
\(\mathcal{A}\) \hspace{1cm} \text{Averaging operator}
\(\mathcal{M}\) \hspace{1cm} \text{Model space}
\(R(x, z)\) \hspace{1cm} \text{Reproducing kernel}
\(\mathbb{R}^d\) \hspace{1cm} \text{Euclidean d-space}
\(\mathbb{N}(t_1, \cdots, t_k)\) \hspace{1cm} \text{Natural polynomial spline space}
\(W^m_2[a, b]\) \hspace{1cm} \text{Sobolev space on } [a, b]
\(W^m_2(\text{per})\) \hspace{1cm} \text{Sobolev space on unit circle}
\(W^m_2(\mathbb{R}^d)\) \hspace{1cm} \text{Thin-plate spline model space}
\(W^m_2(\mathcal{S})\) \hspace{1cm} \text{Sobolev space on unit sphere}
\(\oplus\) \hspace{1cm} \text{Direct sum of function spaces}
\(\otimes\) \hspace{1cm} \text{Tensor product of function spaces}
Preface

Statistical analysis often involves building mathematical models that examine the relationship between dependent and independent variables. This book is about a general class of powerful and flexible modeling techniques, namely, spline smoothing.

Research on smoothing spline models has attracted a great deal of attention in recent years, and the methodology has been widely used in many areas. This book provides an introduction to some basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as an overview of more advanced models, including smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. Methods for model selection and inference are also presented.

The general forms of nonparametric/semiparametric linear/nonlinear fixed/mixed smoothing spline models in this book provide unified frameworks for estimation, inference, and software implementation. This book draws on the theory of reproducing kernel Hilbert space (RKHS) to present various smoothing spline models in a unified fashion. On the other hand, the subject of smoothing spline in the context of RKHS and regularization is often regarded as technical and difficult. One of my main goals is to make the advanced smoothing spline methodology based on RKHS more accessible to practitioners and students. With this in mind, the book focuses on methodology, computation, implementation, software, and application. It provides a gentle introduction to the RKHS, keeps theory at the minimum level, and provides details on how the RKHS can be used to construct spline models.

User-friendly software is key to the routine use of any statistical method. The assist library in R implements methods presented in this book for fitting various nonparametric/semiparametric linear/nonlinear fixed/mixed smoothing spline models. The assist library can be obtained at http://www.r-project.org

Much of the exposition is based on the analysis of real examples. Rather than formal analysis, these examples are intended to illustrate the power and versatility of the spline smoothing methodology. All data analyses are performed in R, and most of them use functions in the
assist library. Codes for all examples and further developments related to this book will be posted on the web page

This book is intended for those wanting to learn about smoothing splines. It can be a reference book for statisticians and scientists who need advanced and flexible modeling techniques. It can also serve as a text for an advanced-level graduate course on the subject. In fact, topics in Chapters 1–4 were covered in a quarter class at the University of California — Santa Barbara, and the University of Science and Technology of China.

I was fortunate indeed to have learned the smoothing spline from Grace Wahba, whose pioneering work has paved the way for much ongoing research and made this book possible. I am grateful to Chunlei Ke, my former student and collaborator, for developing the assist package. Special thanks goes to Anna Liu for reading the draft carefully and correcting many mistakes. Several people have helped me over various phases of writing this book: Chong Gu, Wenxeng Guo, David Hinkley, Ping Ma, and Wendy Meiring. I must thank my editor, David Grubbes, for his patience and encouragement. Finally, I would like to thank several researchers who kindly shared their data sets for inclusion in this book; they are cited where their data are introduced.

Yuedong Wang
Santa Barbara
December 2010
Chapter 1

Introduction

1.1 Parametric and Nonparametric Regression

Regression analysis builds mathematical models that examine the relationship of a dependent variable to one or more independent variables. These models may be used to predict responses at unobserved and/or future values of the independent variables. In the simple case when both the dependent variable y and the independent variable x are scalar variables, given observations (x_i, y_i) for $i = 1, \ldots, n$, a regression model relates dependent and independent variables as follows:

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

(1.1)

where f is the regression function and ϵ_i are zero-mean independent random errors with a common variance σ^2. The goal of regression analysis is to construct a model for f and estimate it based on noisy data.

For example, for the Old Faithful geyser in Yellowstone National Park, consider the problem of predicting the waiting time to the next eruption using the length of the previous eruption. Figure 1.1(a) shows the scatter plot of waiting time to the next eruption ($y = \text{waiting}$) against duration of the previous eruption ($x = \text{duration}$) for 272 observations from the Old Faithful geyser. The goal is to build a mathematical model that relates the waiting time to the duration of the previous eruption. A first attempt might be to approximate the regression function f by a straight line

$$f(x) = \beta_0 + \beta_1 x.$$

(1.2)

The least squares straight line fit is shown in Figure 1.1(a). There is no apparent sign of lack-of-fit. Furthermore, there is no clear visible trend in the plot of residuals in Figure 1.1(b).

Often f is nonlinear in x. A common approach to dealing with non-linear relationship is to approximate f by a polynomial of order m

$$f(x) = \beta_0 + \beta_1 x + \cdots + \beta_{m-1} x^{m-1}.$$

(1.3)
Figure 1.2 shows the scatter plot of acceleration ($y = \text{acceleration}$) against time after impact ($x = \text{time}$) from a simulated motorcycle crash experiment on the efficacy of crash helmets. It is clear that a straight line cannot explain the relationship between acceleration and time. Polynomials with $m = 1, \ldots, 20$ are fitted to the data, and Figure 1.2 shows the best fit selected by Akaike’s information criterion (AIC). There are waves in the fitted curve at both ends of the range. The fit is still not completely satisfactory even when polynomials up to order 20 are considered. Unlike the linear regression model (1.2), except for small m, coefficients in model (1.3) no longer have nice interpretations.
In general, a parametric regression model assumes that the form of f is known except for finitely many unknown parameters. The specific form of f may come from scientific theories and/or approximations to mechanics under some simplified assumptions. The assumptions may be too restrictive and the approximations may be too crude for some applications. An inappropriate model can lead to systematic bias and misleading conclusions. In practice, one should always check the assumed form for the function f.

It is often difficult, if not impossible, to obtain a specific functional form for f. A nonparametric regression model does not assume a predetermined form. Instead, it makes assumptions on qualitative properties of f. For example, one may be willing to assume that f is “smooth”, which does not reduce to a specific form with finite number of parameters. Rather, it usually leads to some infinite dimensional collections of functions. The basic idea of nonparametric regression is to let the data speak for themselves. That is to let the data decide which function fits the best without imposing any specific form on f. Consequently, nonparametric methods are in general more flexible. They can uncover structure in the data that might otherwise be missed.

For illustration, we fit cubic splines to the geyser data. The cubic spline is a special nonparametric regression model that will be introduced in Section 1.2. A cubic spline fit to residuals from the linear model (1.2) reveals a nonzero trend in Figure 1.3(a). This raises the question of...
whether a simple linear regression model is appropriate for the geyser data. A cubic spline fit to the original data is shown in Figure 1.3(b). It reveals that there are two clusters in the independent variable, and a different linear model may be required for each cluster. Sections 2.10, 3.8, and 3.9 contain more analysis of the geyser data. A cubic spline fit to the motorcycle data is shown in Figure 1.4. It fits data much better than the polynomial model. Sections 2.10, 3.8, 5.4.1, and 6.4 contain more analysis of the motorcycle data.

FIGURE 1.4 Motorcycle data, plot of observations, and the cubic spline fit.

The above simple exposition indicates that the nonparametric regression technique can be applied to different steps in regression analysis: data exploration, model building, testing parametric models, and diagnosis. In fact, as illustrated throughout the book, spline smoothing is a powerful and versatile tool for building statistical models to exploit structures in data.

1.2 Polynomial Splines

The polynomial (1.3) is a global model which makes it less adaptive to local variations. Individual observations can have undue influence on the fit in remote regions. For example, in the motorcycle data, the behavior of the mean function varies drastically from one region to another.
These local variations led to oscillations at both ends of the range in the polynomial fit. A natural solution to overcome this limitation is to use piecewise polynomials, the basic idea behind polynomial splines.

Let \(a < t_1 < \cdots < t_k < b \) be fixed points called knots. Let \(t_0 = a \) and \(t_{k+1} = b \). Roughly speaking, polynomial splines are piecewise polynomials joined together smoothly at knots. Formally, a polynomial spline of order \(r \) is a real-valued function on \([a, b]\), \(f(t) \), such that

(i) \(f \) is a piecewise polynomial of order \(r \) on \([t_i, t_{i+1})\), \(i = 0, 1, \ldots, k \);
(ii) \(f \) has \(r - 2 \) continuous derivatives and the \((r - 1)\)st derivative is a step function with jumps at knots.

Now consider even orders represented as \(r = 2m \). The function \(f \) is a natural polynomial spline of order \(2m \) if, in addition to (i) and (ii), it satisfies the natural boundary conditions

(iii) \(f^{(j)}(a) = f^{(j)}(b) = 0 \), \(j = m, \ldots, 2m - 1 \).

The natural boundary conditions imply that \(f \) is a polynomial of order \(m \) on the two outside subintervals \([a, t_1]\) and \([t_k, b]\). Denote the function space of natural polynomial splines of order \(2m \) with knots \(t_1, \ldots, t_k \) as \(NS^{2m}(t_1, \ldots, t_k) \).

One approach, known as regression spline, is to approximate \(f \) using a polynomial spline or natural polynomial spline. To get a good approximation, one needs to decide the number and locations of knots. This book covers a different approach known as smoothing spline. It starts with a well-defined model space for \(f \) and introduces a penalty to prevent overfitting. We now describe this approach for polynomial splines.

Consider the regression model (1.1). Suppose \(f \) is "smooth". Specifically, assume that \(f \in W^{m, 2}_2[a, b] \) where the Sobolev space

\[
W^{m, 2}_2[a, b] = \left\{ f : f, f', \ldots, f^{(m-1)} \text{ are absolutely continuous,} \int_a^b (f^{(m)})^2 dx < \infty \right\}. \tag{1.4}
\]

For any \(a \leq x \leq b \), Taylor’s theorem states that

\[
f(x) = \sum_{\nu=0}^{m-1} \frac{f^{(\nu)}(a)}{\nu!} (x - a)^\nu + \int_a^x \frac{(x - u)^{m-1}}{(m-1)!} f^{(m)}(u) du. \tag{1.5}
\]

It is clear that the polynomial regression model (1.3) ignores the remainder term \(\text{Rem}(x) \) in the hope that it is negligible. It is often difficult
to verify this assumption in practice. The idea behind the spline smoothing is to let data decide how large \(\text{Rem}(x) \) should be. Since \(W_{2m}^m[a,b] \) is an infinite dimensional space, a direct fit to \(f \) by minimizing the least squares (LS)

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

(1.6)

leads to interpolation. Therefore, certain control over \(\text{Rem}(x) \) is necessary. One natural approach is to control how far \(f \) is allowed to depart from the polynomial model. Under appropriate norms defined later in Sections 2.2 and 2.6, one measure of distance between \(f \) and polynomials is \(\int_a^b (f^{(m)})^2 dx \). It is then reasonable to estimate \(f \) by minimizing the LS (1.6) under the constraint

\[
\int_a^b (f^{(m)})^2 dx \leq \rho
\]

(1.7)

for a constant \(\rho \). By introducing a Lagrange multiplier, the constrained minimization problem (1.6) and (1.7) is equivalent to minimizing the penalized least squares (PLS):

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_a^b (f^{(m)})^2 dx.
\]

(1.8)

In the remainder of this book, a polynomial spline refers to the solution of the PLS (1.8) in the model space \(W_{2m}^m[a,b] \). A cubic spline is a special case of the polynomial spline with \(m = 2 \). Since it measures the roughness of the function \(f \), \(\int_a^b (f^{(m)})^2 dx \) is often referred to as a roughness penalty. It is obvious that there is no penalty for polynomials of order less than or equal to \(m \). The smoothing parameter \(\lambda \) balances the trade-off between goodness-of-fit measured by the LS and roughness of the estimate measured by \(\int_a^b (f^{(m)})^2 dx \).

Suppose that \(n \geq m \) and \(a \leq x_1 < x_2 < \cdots < x_n \leq b \). Then, for fixed \(0 < \lambda < \infty \), (1.8) has a unique minimizer \(\hat{f} \) and \(\hat{f} \in NS^{2m}(x_1, \ldots, x_n) \) (Eubank 1988). This result indicates that even though we started with the infinite dimensional space \(W_{2m}^m[a,b] \) as the model space for \(f \), the solution to the PLS (1.8) belongs to a finite dimensional space. Specifically, the solution is a natural polynomial spline with knots at distinct design points. One approach to computing the polynomial spline estimate is to represent \(\hat{f} \) as a linear combination of a basis of \(NS^{2m}(x_1, \ldots, x_n) \).

Several basis constructions were provided in Section 3.3.3 of Eubank (1988). In particular, the R function `smooth.spline` implements this approach for the cubic spline using the B-spline basis. For example, the cubic spline fit in Figure 1.4 is derived by the following statements:
> library(MASS); attach(mcycle)
> smooth.spline(times, accel, all.knots=T)

This book presents a different approach. Instead of basis functions, representer of reproducing kernel Hilbert spaces will be used to represent the spline estimate. This approach allows us to deal with many different spline models in a unified fashion. Details of this approach for polynomial splines will be presented in Sections 2.2 and 2.6.

When $\lambda = 0$, there is no penalty, and the natural spline that interpolates observations is the unique minimizer. When $\lambda = \infty$, the unique minimizer is the mth order polynomial. As λ varies from ∞ to 0, we have a family of models ranging from the parametric polynomial model to interpolation. The value of λ decides how far f is allowed to depart from the polynomial model. Thus the choice of λ holds the key to the success of a spline estimate. We discuss how to choose λ based on data in Chapter 3.

1.3 Scope of This Book

Driven by many sophisticated applications and fueled by modern computing power, many flexible nonparametric and semiparametric modeling techniques have been developed to relax parametric assumptions and to exploit possible hidden structure. There are many different nonparametric methods. This book concentrates on one of them, smoothing spline. Existing books on this topic include Eubank (1988), Wahba (1990), Green and Silverman (1994), Eubank (1999), Gu (2002), and Ruppert, Wand and Carroll (2003). The goals of this book are to (a) make the advanced smoothing spline methodology based on reproducing kernel Hilbert spaces more accessible to practitioners and students; (b) provide software and examples so that the spline smoothing methods can be routinely used in practice; and (c) provide a comprehensive coverage of recently developed smoothing spline nonparametric/semiparametric linear/nonlinear fixed/mixed models. We concentrate on the methodology, implementation, software, and application. Theoretical results are stated without proofs. All methods will be demonstrated using real data sets and R functions.

The polynomial spline in Section 1.2 concerns the functions defined on the domain $[a, b]$. In many applications, the domain of the regression function is not a continuous interval. Furthermore, the regression function may only be observed indirectly. Chapter 2 introduces gen-
eral smoothing spline regression models with reproducing kernel Hilbert spaces on general domains as model spaces. Penalized LS estimation, Kimeldorf-Wahba representer theorem, computation, and the R function \texttt{ssr} will be covered. Explicit constructions of model spaces will be discussed in detail for some popular smoothing spline models including polynomial, periodic, thin-plate, spherical, and L-splines.

Chapter 3 introduces methods for selecting the smoothing parameter and making inferences about the regression function. The impact of the smoothing parameter and basic concepts for model selection will be discussed and illustrated using an example. Connections between smoothing spline models and Bayes/mixed-effects models will be established. The unbiased risk, generalized cross-validation, and generalized maximum likelihood methods will be introduced for selecting the smoothing parameter. Bayesian and bootstrap confidence intervals will be introduced for the regression function and its components. The locally most powerful, generalized maximum likelihood and generalized cross-validation tests will also be introduced to test the hypothesis of a parametric model versus a nonparametric alternative.

Analogous to multiple regression, **Chapter 4** constructs models for multivariate regression functions based on smoothing spline analysis of variance (ANOVA) decompositions. The resulting models have hierarchical structures that facilitate model selection and interpretation. Smoothing spline ANOVA decompositions for tensor products of some commonly used smoothing spline models will be illustrated. Penalized LS estimation involving multiple smoothing parameters and componentwise Bayesian confidence intervals will be covered.

Chapter 5 presents spline smoothing methods for heterogeneous and correlated observations. Presence of heterogeneity and correlation may lead to wrong choice of the smoothing parameters and erroneous inference. Penalized weighted LS will be used for estimation. Unbiased risk, generalized cross-validation, and generalized maximum likelihood methods will be extended for selecting the smoothing parameters. Variance and correlation structures will also be discussed.

Analogous to generalized linear models, **Chapter 6** introduces smoothing spline ANOVA models for observations generated from a particular distribution in the exponential family including binomial, Poisson, and gamma distributions. Penalized likelihood will be used for estimation, and methods for selecting the smoothing parameters will be discussed. Nonparametric estimation of variance and spectral density functions will be presented.

Analogous to nonlinear regression, **Chapter 7** introduces spline smoothing methods for nonparametric nonlinear regression models where some unknown functions are observed indirectly through nonlinear function-
als. In addition to fitting theoretical and empirical nonlinear nonparametric regression models, methods in this chapter may also be used to deal with constraints on the nonparametric function such as positivity or monotonicity. Several algorithms based on Gauss–Newton, Newton–Raphson, extended Gauss–Newton and Gauss–Seidel methods will be presented for different situations. Computation and the R function `nnr` will be covered.

Chapter 8 introduces semiparametric regression models that involve both parameters and nonparametric functions. The mean function may depend on the parameters and the nonparametric functions linearly or nonlinearly. The semiparametric regression models include many well-known models such as the partial spline, varying coefficients, projection pursuit, single index, multiple index, functional linear, and shape invariant models as special cases. Estimation, inference, computation, and the R function `snr` will also be covered.

Chapter 9 introduces semiparametric linear and nonlinear mixed-effects models. Smoothing spline ANOVA decompositions are extended for the construction of semiparametric mixed-effects models that parallel the classical mixed models. Estimation and inference methods, computation, and the R functions `slm` and `snm` will be covered as well.

1.4 The `assist` Package

The `assist` package was developed for fitting various smoothing spline models covered in this book. It contains five main functions, `ssr`, `nnr`, `snr`, `slm`, and `snm` for fitting various smoothing spline models. The function `ssr` fits smoothing spline regression models in Chapter 2, smoothing spline ANOVA models in Chapter 4, extended smoothing spline ANOVA models with heterogeneous and correlated observations in Chapter 5, generalized smoothing spline ANOVA models in Chapter 6, and semiparametric linear regression models in Chapter 8, Section 8.2. The function `nnr` fits nonparametric nonlinear regression models in Chapter 7. The function `snr` fits semiparametric nonlinear regression models in Chapter 8, Section 8.3. The functions `slm` and `snm` fit semiparametric linear and nonlinear mixed-effects models in Chapter 9. The `assist` package is available at

http://cran.r-project.org

Figure 1.5 shows how the functions in `assist` generalize some of the existing R functions for regression analysis.
Chapter 2

Smoothing Spline Regression

2.1 Reproducing Kernel Hilbert Space

Polynomial splines concern functions defined on a continuous interval. This is the most common situation in practice. Nevertheless, many applications require modeling functions defined on domains other than a continuous interval. For example, for spatial data with measurements on latitude and longitude, the domain of the function is the Euclidean space \mathbb{R}^2. Specific spline models were developed for different applications. It is desirable to develop methodology and software on a general platform such that special cases are dealt with in a unified fashion. Reproducing Kernel Hilbert Space (RKHS) provides such a general platform.

This section provides a very brief review of RKHS. Throughout this book, important theoretical results are presented in italic without proofs. Details and proofs related to RKHS can be found in Aronszajn (1950), Wahba (1990), Gu (2002), and Berlinet and Thomas-Agnan (2004).

A nonempty set E of elements f, g, h, \ldots forms a linear space if there are two operations: (1) addition: a mapping $(f, g) \to f + g$ from $E \times E$ into E; and (2) multiplication: a mapping $(\alpha, f) \to \alpha f$ from $\mathbb{R} \times E$ into E, such that for any $\alpha, \beta \in \mathbb{R}$, the following conditions are satisfied: (a) $f + g = g + f$; (b) $(f + g) + h = f + (g + h)$; (c) for every $f, g \in E$, there exists $h \in E$ such that $f + h = g$; (d) $\alpha(\beta f) = (\alpha \beta)f$; (e) $(\alpha + \beta)f = \alpha f + \beta f$; (f) $\alpha(f + g) = \alpha f + \alpha g$; and (g) $1f = f$. Property (c) implies that there exists a zero element, denoted as 0, such that $f + 0 = f$ for all $f \in E$.

A finite collection of elements f_1, \ldots, f_k in E is called linearly independent if the relation $\alpha_1 f_1 + \cdots + \alpha_k f_k = 0$ holds only in the trivial case with $\alpha_1 = \cdots = \alpha_k = 0$. An arbitrary collection of elements A is called linearly independent if every finite subcollection is linearly independent. Let A be a subset of a linear space E. Define

$$\text{span}A \triangleq \{ \alpha_1 f_1 + \cdots + \alpha_k f_k : f_1, \ldots, f_k \in A, \alpha_1, \ldots, \alpha_k \in \mathbb{R}, \ k = 1, 2, \ldots \}.$$
A set $B \subseteq E$ is called a basis of E if B is linearly independent and $\text{span} B = E$.

A nonnegative function $\| \cdot \|$ on a linear space E is called a norm if (a) $\| f \| = 0$ if and only if $f = 0$; (b) $\| \alpha f \| = |\alpha| \| f \|$; and (c) $\| f + g \| \leq \| f \| + \| g \|$. If the function $\| \cdot \|$ satisfies (b) and (c) only, then it is called a seminorm. A linear space with a norm is called a normed linear space.

Let E be a linear space. A mapping $(\cdot, \cdot) : E \times E \to \mathbb{R}$ is called an inner product in E if it satisfies (a) $(f, g) = (g, f)$; (b) $(\alpha f + \beta g, h) = \alpha (f, h) + \beta (g, h)$; and (c) $(f, f) \geq 0$, and $(f, f) = 0$ if and only if $f = 0$. An inner product defines a norm: $\| f \| \triangleq \sqrt{(f, f)}$. A linear space with an inner product is called an inner product space.

Let E be a normed linear space and f_n be a sequence in E. The sequence f_n is said to converge to $f \in E$ if $\lim_{n \to \infty} \| f_n - f \| = 0$, and f is called the limit point. The sequence f_n is called a Cauchy sequence if $\lim_{l,n \to \infty} \| f_l - f_n \| = 0$. The space E is complete if every Cauchy sequence converges to an element in E. A complete inner product space is called a Hilbert space.

A functional L on a Hilbert space H is a mapping from H to \mathbb{R}. L is a linear functional if it satisfies $L(\alpha f + \beta g) = \alpha Lf + \beta Lg$. L is said to be continuous if $\lim_{n \to \infty} Lf_n = Lf$ when $\lim_{n \to \infty} f_n = f$. L is said to be bounded if there exists a constant M such that $|Lf| \leq M \| f \|$ for all $f \in H$. L is continuous if and only if L is bounded. For every fixed $h \in H$, $L_h f \triangleq (h, f)$ defines a continuous linear functional. Conversely, every continuous linear functional L can be represented as an inner product with a representer.

Riesz representation theorem
Let L be a continuous linear functional on a Hilbert space H. There exists a unique h_L such that $L f = (h_L, f)$ for all $f \in H$. The element h_L is called the representer of L.

Let H be a Hilbert space of real-valued functions from X to \mathbb{R} where X is an arbitrary set. For a fixed $x \in X$, the evaluational functional $L_x : H \to \mathbb{R}$ is defined as

$$L_x f \triangleq f(x).$$

Note that the evaluational functional L_x maps a function to a real value while the function f maps a point x to a real value. L_x applies to all functions in H with a fixed x. Evaluational functionals are linear since $L_x(\alpha f + \beta g) = \alpha f(x) + \beta g(x) = \alpha L_x f + \beta L_x g$.

Definition A Hilbert space of real-valued functions H is an RKHS if every evaluational functional is continuous.
Let \mathcal{H} be an RKHS. Then, for each $x \in \mathcal{X}$, the evaluational functional $L_x f = f(x)$ is continuous. By the Riesz representation theorem, there exists an element R_x in \mathcal{H} such that

$$L_x f = f(x) = (R_x, f),$$

where the dependence of the representer on x is expressed explicitly as R_x. Consider $R_x(z)$ as a bivariate function of x and z and let $R(x, z) = R_x(z)$. The bivariate function $R(x, z)$ is called the reproducing kernel (RK) of an RKHS \mathcal{H}. The term reproducing kernel comes from the fact that $(R_x, R_z) = R(x, z)$. It is easy to check that an RK is nonnegative definite. That is, R is symmetric $R(x, z) = R(z, x)$, and for any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$,

$$\sum_{i,j=1}^n \alpha_i \alpha_j R(x_i, x_j) \geq 0.$$

Therefore, every RKHS has a unique RK that is nonnegative definite. Conversely, an RKHS can be constructed based on a nonnegative definite function.

Moore–Aronszajn theorem

For every nonnegative definite function R on $\mathcal{X} \times \mathcal{X}$, there exists a unique RKHS on \mathcal{X} with R as its RK.

The above results indicate that there exists an one-to-one correspondence between RKHS’s and nonnegative definite functions. For a finite dimensional space \mathcal{H} with an orthonormal basis $\phi_1(x), \ldots, \phi_p(x)$, it is easy to see that

$$R(x, z) = \sum_{i=1}^p \phi_i(x) \phi_i(z)$$

is the RK of \mathcal{H}.

The following definitions and results are useful for the construction and decomposition of model spaces. \mathcal{S} is called a subspace of a Hilbert space \mathcal{H} if $\mathcal{S} \subset \mathcal{H}$ and $\alpha f + \beta g \in \mathcal{S}$ for every $\alpha, \beta \in \mathbb{R}$ and $f, g \in \mathcal{S}$. A closed subspace \mathcal{S} is a Hilbert space. The orthogonal complement of \mathcal{S} is defined as

$$\mathcal{S}^\perp = \{ f \in \mathcal{H} : (f,g) = 0 \text{ for all } g \in \mathcal{S} \}.$$

\mathcal{S}^\perp is a closed subspace of \mathcal{H}. If \mathcal{S} is a closed subspace of a Hilbert space \mathcal{H}, then every element $f \in \mathcal{H}$ has a unique decomposition in the form $f = g + h$, where $g \in \mathcal{S}$ and $h \in \mathcal{S}^\perp$. Equivalently, \mathcal{H} is decomposed
into two subspaces $\mathcal{H} = S \oplus S^\perp$. This decomposition is called a tensor sum decomposition, and elements g and h are called projections onto S and S^\perp, respectively. Sometimes the notation $\mathcal{H} \ominus S$ will be used to denote the subspaces S^\perp. Tensor sum decomposition with more than two subspaces can be defined recursively.

All closed subspaces of an RKHS are RKHS’s. If $\mathcal{H} = H_0 \oplus H_1$ and R, R_0, and R_1 are RKs of \mathcal{H}, H_0, and H_1 respectively, then $R = R_0 + R_1$.

Suppose \mathcal{H} is a Hilbert space and $\mathcal{H} = H_0 \oplus H_1$. If H_0 and H_1 are RKHS’s with RKs R_0 and R_1, respectively, then \mathcal{H} is an RKHS with RK $R = R_0 + R_1$.

2.2 Model Space for Polynomial Splines

Before introducing the general smoothing spline models, it is instructive to see how the polynomial splines introduced in Section 1.2 can be derived under the RKHS setup. Again, consider the regression model

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n, \quad (2.1)$$

where the domain of the function f is $\mathcal{X} = [a, b]$ and the model space for f is the Sobolev space $W_m^2[a, b]$ defined in (1.4). The smoothing spline estimate \hat{f} is the solution to the PLS (1.8).

Model space construction and decomposition of $W_m^2[a, b]$

The Sobolev space $W_m^2[a, b]$ is an RKHS with the inner product

$$(f, g) = \sum_{\nu=0}^{m-1} f^{(\nu)}(a)g^{(\nu)}(a) + \int_a^b f^{(m)}(x)g^{(m)}(x)dx. \quad (2.2)$$

Furthermore, $W_m^2[a, b] = \mathcal{H}_0 \oplus \mathcal{H}_1$, where

$\mathcal{H}_0 = \text{span}\{1, (x-a), \ldots, (x-a)^{m-1}/(m-1)!\}$,

$\mathcal{H}_1 = \{f : f^{(\nu)}(a) = 0, \nu = 0, \ldots, m-1, \int_a^b (f^{(m)})^2dx < \infty\}, \quad (2.3)$

are RKHS’s with corresponding RKs

$$R_0(x, z) = \sum_{\nu=1}^{m} \frac{(x-a)^{\nu-1}(z-a)^{\nu-1}}{(\nu-1)!},$$

$$R_1(x, z) = \int_a^b \frac{(x-u)^{m-1}(z-u)^{m-1}}{(m-1)!}\frac{du}{(m-1)!}. \quad (2.4)$$
The function \((x)_+ = \max\{x, 0\}\).

Details about the foregoing construction can be found in Schumaker (2007). It is clear that \(H_0\) contains the polynomial of order \(m\) in the Taylor expansion. Note that the basis listed in (2.3), \(\phi_\nu(x) = (x - a)^{\nu-1}/(\nu - 1)!\) for \(\nu = 1, \ldots, m\), is an orthonormal basis of \(H_0\). For any \(f \in H_1\), it is easy to check that

\[
\begin{align*}
f(x) &= \int_a^x f'(u)du = \cdots = \int_a^x dx_1 \int_a^{x_1} dx_2 \cdots \int_a^{x_{m-1}} f^{(m)}(u)du \\
&= \int_a^x dx_1 \int_a^{x_1} dx_2 \cdots \int_a^{x_{m-2}} (x_{m-2} - u)f^{(m)}(u)du = \cdots \\
&= \int_a^x (x - u)^{m-1} \frac{1}{(m-1)!} f^{(m)}(u)du.
\end{align*}
\]

Thus the subspace \(H_1\) contains the remainder term in the Taylor expansion.

Denote \(P_1\) as the orthogonal projection operator onto \(H_1\). From the definition of the inner product, the roughness penalty

\[
\int_a^b (f^{(m)})^2 dx = ||P_1 f||^2. \tag{2.5}
\]

Therefore, \(\int_a^b (f^{(m)})^2 dx\) measures the distance between \(f\) and the parametric polynomial space \(H_0\). There is no penalty to functions in \(H_0\).

The PLS (1.8) can be rewritten as

\[
\frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda||P_1 f||^2. \tag{2.6}
\]

The solution to (2.6) will be given for the general case in Section 2.4. The above setup for polynomial splines suggests the following ingredients for the construction of a general smoothing spline model:

1. An RKHS \(H\) as the model space for \(f\)
2. A decomposition of the model space into two subspaces, \(H = H_0 \oplus H_1\), where \(H_0\) consists of functions that are not penalized
3. A penalty \(||P_1 f||^2\)

Based on prior knowledge and purpose of the study, different choices can be made on the model space, its decomposition, and the penalty. These options make the spline smoothing method flexible and versatile. Choices of these options will be illustrated throughout the book.
2.3 General Smoothing Spline Regression Models

A general smoothing spline regression (SSR) model assumes that

\[y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n, \quad (2.7) \]

where \(y_i \) are observations of the function \(f \) evaluated at design points \(x_i \), and \(\epsilon_i \) are zero-mean independent random errors with a common variance \(\sigma^2 \). To deal with different situations in a unified fashion, let the domain of the function \(f \) be an arbitrary set \(X \), and the model space be an RKHS \(\mathcal{H} \) on \(X \) with RK \(R(x, z) \). The choice of \(\mathcal{H} \) depends on several factors including the domain \(X \) and prior knowledge about the function \(f \). Suppose \(\mathcal{H} \) can be decomposed into two subspaces,

\[\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1, \quad (2.8) \]

where \(\mathcal{H}_0 \) is a finite dimensional space with basis functions \(\phi_1(x), \ldots, \phi_p(x) \), and \(\mathcal{H}_1 \) is an RKHS with RK \(R_1(x, z) \). \(\mathcal{H}_0 \), often referred to as the \textit{null space}, consists of functions that are not penalized. In addition to the construction for polynomial splines in Section 2.2, specific constructions of commonly used model spaces will be discussed in Sections 2.6–2.11.

The decomposition (2.8) is equivalent to decomposing the function

\[f = f_0 + f_1, \quad (2.9) \]

where \(f_0 \) and \(f_1 \) are projections onto \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \), respectively. The component \(f_0 \) represents a linear regression model in space \(\mathcal{H}_0 \), and the component \(f_1 \) represents systematic variation not explained by \(f_0 \). Therefore, the magnitude of \(f_1 \) can be used to check or test if the parametric model is appropriate. Projections \(f_0 \) and \(f_1 \) will be referred to as the “parametric” and “smooth” components, respectively.

Sometimes observations of \(f \) are made indirectly through linear functionals. For example, \(f \) may be observed in the form \(\int_a^b w_i(x) f(x) \, dx \) where \(w_i \) are known functions. Another example is that observations are taken on the derivatives \(f'(x_i) \). Therefore, it is useful to consider an even more general SSR model

\[y_i = \mathcal{L}_i f + \epsilon_i, \quad i = 1, \ldots, n, \quad (2.10) \]

where \(\mathcal{L}_i \) are bounded linear functionals on \(\mathcal{H} \). Model (2.7) is a special case of (2.10) with \(\mathcal{L}_i \) being evaluational functionals at design points defined as \(\mathcal{L}_i f = f(x_i) \). By the definition of an RKHS, these evaluational functionals are bounded.
2.4 Penalized Least Squares Estimation

The estimation method will be presented for the general model (2.10). The smoothing spline estimate of \(f \), \(\hat{f} \), is the minimizer of the PLS

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - L_i f)^2 + \lambda ||P_1 f||^2,
\]

(2.11)

where \(\lambda \) is a smoothing parameter controlling the balance between the goodness-of-fit measured by the least squares and departure from the null space \(H_0 \) measured by \(||P_1 f||^2 \). Functions in \(H_0 \) are not penalized since \(||P_1 f||^2 = 0 \) when \(f \in H_0 \). Note that \(\hat{f} \) depends on \(\lambda \) even though the dependence is not expressed explicitly. Estimation procedures presented in this chapter assume that the \(\lambda \) has been fixed. The impact of the smoothing parameter and methods of selecting it will be discussed in Chapter 3.

Since \(L_i \) are bounded linear functionals, by the Riesz representation theorem, there exists a representer \(\eta_i \in H \) such that

\[
L_i f = (\eta_i, f).
\]

For a fixed \(x \), consider \(R_x(z) \triangleq R(x, z) \) as a univariate function of \(z \). Then, by properties of the reproducing kernel, we have

\[
\eta_i(x) = (\eta_i, R_x) = L_i R_x = L_{i(z)} R(x, z),
\]

(2.12)

Equation (2.12) implies that the representer \(\eta_i \) can be obtained by applying the operator to the RK \(R \). Let \(\xi_i = P_1 \eta_i \) be the projection of \(\eta_i \) onto \(H_1 \). Since \(R(x, z) = R_0(x, z) + R_1(x, z) \), where \(R_0 \) and \(R_1 \) are RKs of \(H_0 \) and \(H_1 \), respectively, and \(P_1 \) is self-adjoint such that \((P_1 g, h) = (g, P_1 h)\) for any \(g, h \in H \), we have

\[
\xi_i(x) = (\xi_i, R_x) = (P_1 \eta_i, R_x) = (\eta_i, P_1 R_x) = L_{i(z)} R_1(x, z).
\]

(2.13)

Equation (2.13) implies that the representer \(\xi_i \) can be obtained by applying the operator to the RK \(R_1 \). Furthermore, \((\xi_i, \xi_j) = L_{i(x)} L_{j(z)} R_1(x, z)\). Denote

\[
T = \{L_i \phi_\nu\}_{i=1, \nu=1}^{n, p}, \quad \Sigma = \{L_{i(z)} L_{j(z)} R_1(x, z)\}_{i, j=1}^{n},
\]

(2.14)

where \(T \) is an \(n \times p \) matrix, and \(\Sigma \) is an \(n \times n \) matrix. For the special case of evalutional functionals \(L_i f = f(x_i) \), we have \(\xi_i(x) = R_1(x, x_i) \), \(T = \{\phi_\nu(x_i)\}_{i=1, \nu=1}^{n, p} \), and \(\Sigma = \{R_1(x_i, x_j)\}_{i, j=1}^{n} \).
Write the estimate \(\hat{f} \) as

\[
\hat{f}(x) = \sum_{\nu=1}^{p} d_\nu \phi_\nu(x) + \sum_{i=1}^{n} c_i \xi_i(x) + \rho,
\]

where \(\rho \in \mathcal{H}_1 \) and \((\rho, \xi_i) = 0 \) for \(i = 1, \ldots, n \). Since \(\xi_i = P_1 \eta_i \), then \(\eta_i \) can be written as \(\eta_i = \zeta_i + \xi_i \), where \(\zeta_i \in \mathcal{H}_0 \). Therefore,

\[
\mathcal{L}_i \rho = (\eta_i, \rho) = (\zeta_i, \rho) + (\xi_i, \rho) = 0. \tag{2.15}
\]

Let \(y = (y_1, \ldots, y_n)^T \) and \(\hat{f} = (\mathcal{L}_1 \hat{f}, \ldots, \mathcal{L}_n \hat{f})^T \) be the vectors of observations and fitted values, respectively. Let \(d = (d_1, \ldots, d_p)^T \) and \(c = (c_1, \ldots, c_n)^T \). From (2.15), we have

\[
\hat{f} = Td + \Sigma c. \tag{2.16}
\]

Furthermore, \(||P_1 f||^2 = ||\sum_{i=1}^{n} c_i \xi_i + \rho||^2 = c^T \Sigma c + ||\rho||^2 \). Then the PLS (2.11) becomes

\[
\frac{1}{n} ||y - Td - \Sigma c||^2 + \lambda c^T \Sigma c + ||\rho||^2. \tag{2.17}
\]

It is obvious that (2.17) is minimized when \(\rho = 0 \), which leads to the following result in Kimeldorf and Wahba (1971).

Kimeldorf–Wahba representer theorem

Suppose \(T \) is of full column rank. Then the PLS (2.11) has a unique minimizer given by

\[
\hat{f}(x) = \sum_{\nu=1}^{p} d_\nu \phi_\nu(x) + \sum_{i=1}^{n} c_i \xi_i(x). \tag{2.18}
\]

The above theorem indicates that the smoothing spline estimate \(\hat{f} \) falls in a finite dimensional space. Equation (2.18) represents the smoothing spline estimate \(\hat{f} \) as a linear combination of basis of \(\mathcal{H}_0 \) and representers in \(\mathcal{H}_1 \). Coefficients \(c \) and \(d \) need to be estimated from data. Based on (2.18), the PLS (2.17) reduces to

\[
\frac{1}{n} ||y - Td - \Sigma c||^2 + \lambda c^T \Sigma c. \tag{2.19}
\]

Taking the first derivatives leads to the following equations for \(c \) and \(d \):

\[
(S + n\lambda I)\Sigma c + \Sigma Td = \Sigma y, \quad T^T \Sigma c + T^T Td = T^T y, \tag{2.20}
\]
where \(I \) is the identity matrix. Equations in (2.20) are equivalent to
\[
\begin{pmatrix}
\Sigma + n\lambda I \\
\Sigma T T \\
T T T
\end{pmatrix}
\begin{pmatrix}
\Sigma c \\
d
\end{pmatrix}
= \begin{pmatrix}
\Sigma y \\
T T T y
\end{pmatrix}.
\]

There may be multiple sets of solutions for \(c \) when \(\Sigma \) is singular. Nevertheless, all sets of solutions lead to the same estimate of the function \(\hat{f} \) (Gu 2002). Therefore, it is only necessary to derive one set of solutions. Consider the following equations
\[
(\Sigma + n\lambda I) c + T d = y, \\
T T c = 0,
\]
(2.21)

It is easy to see that a set of solutions to (2.21) is also a set of solutions to (2.20). The solutions to (2.21) are
\[
d = (T T M T)_{-1} T M_{-1} y, \\
c = M_{-1} (I - T(T T M T)_{-1} T M_{-1}) y,
\]
(2.22)

where \(M = \Sigma + n\lambda I \).

To compute the coefficients \(c \) and \(d \), consider the QR decomposition of \(T \),
\[
T = (Q_1 Q_2) \begin{pmatrix}
R \\
0
\end{pmatrix},
\]
where \(Q_1, Q_2 \), and \(R \) are \(n \times p, n \times (n - p) \), and \(p \times p \) matrices; \(Q = (Q_1 Q_2) \) is an orthogonal matrix; and \(R \) is upper triangular and invertible. Since \(T T c = R T Q_1^T c = 0 \), we have \(Q_1^T c = 0 \) and \(c = QQ^T c = (Q_1 Q_1^T + Q_2 Q_2^T) c = Q_2 Q_2^T c \). Multiplying the first equation in (2.21) by \(Q_2^T \) and using the fact that \(Q_2^T T = 0 \), we have \(Q_2^T M Q_2 Q_2^T c = Q_2^T y \). Therefore,
\[
c = Q_2(Q_2^T M Q_2)_{-1} Q_2^T y.
\]
(2.23)

Multiplying the first equation in (2.21) by \(Q_1^T \), we have \(Rd = Q_1^T (y - Mc) \). Thus,
\[
d = R_{-1} Q_1^T (y - Mc).
\]
(2.24)

Equations (2.23) and (2.24) will be used to compute coefficients \(c \) and \(d \).

Based on (2.16), the first equation in (2.21) and equation (2.23), the fitted values
\[
\hat{f} = T d + \Sigma c = y - n\lambda c = H(\lambda) y,
\]
(2.25)

where
\[
H(\lambda) \triangleq I - n\lambda Q_2(Q_2^T M Q_2)_{-1} Q_2^T
\]
(2.26)
is the so-called hat (influence, smoothing) matrix. The dependence of the hat matrix on the smoothing parameter \(\lambda \) is expressed explicitly. Note that equation (2.25) provides the fitted values while equation (2.18) can be used to compute estimates at any values of \(x \).

2.5 The \texttt{ssr} Function

The R function \texttt{ssr} in the \texttt{assist} package is designed to fit SSR models. After deciding the model space and the penalty, the estimate \(\hat{f} \) is completely decided by \(y \), \(T \), and \(\Sigma \). Therefore, these terms need to be specified in the \texttt{ssr} function. A typical call is

\[
\text{ssr(formula, rk)}
\]

where \texttt{formula} and \texttt{rk} are required arguments. Together they specify \(y \), \(T \), and \(\Sigma \). Suppose the vector \(y \) and matrices \(T \) and \(\Sigma \) have been created in R. Then, \texttt{formula} lists \(y \) on the left-hand side, and \(T \) matrix on the right-hand side of an operator \(\sim \). The argument \texttt{rk} specifies the matrix \(\Sigma \).

In the most common situation where \(L_i \) are evaluational functionals, the fitting can be greatly simplified since \(L_i \) are decided by design points \(x_i \). There is no need to compute \(T \) and \(\Sigma \) matrices before calling the \texttt{ssr} function. Instead, they can be computed internally. Specifically, a direct approach to fit the standard SSR model (2.7) is to list \(y \) on the left-hand side and \(\phi_1(x), \ldots, \phi_p(x) \) on the right-hand side of an operator \(\sim \) in the \texttt{formula}, and to specify a function for computing \(R_1 \) in the \texttt{rk} argument. Functions for computing the RKs of some commonly used RKHS’s are available in the \texttt{assist} package. Users can easily write their own functions for computing RKs.

There are several optional arguments for the \texttt{ssr} function, some of which will be discussed in the following chapters. In particular, methods for selecting the smoothing parameter \(\lambda \) will be discussed in Chapter 3. For simplicity, unless explicitly specified, all examples in this chapter use the default method that selects \(\lambda \) using the generalized cross-validation criterion. Bayesian and bootstrap confidence intervals for fitted functions are constructed based on the methods in Section 3.8.

We now show how to fit polynomial splines to the motorcycle data. Consider the construction of polynomial splines in Section 2.2. For simplicity, we first consider the special cases of polynomial splines with \(m = 1 \) and \(m = 2 \), which are called \textit{linear} and \textit{cubic splines}, respectively. Denote \(x \wedge z = \min\{x, z\} \) and \(x \vee z = \max\{x, z\} \). Based on (2.3)
and (2.4), Table 2.1 lists bases for null spaces and RKs of linear and cubic splines for the special domain $\mathcal{X} = [0, b]$.

TABLE 2.1 Bases of null spaces and RKs of linear and cubic splines under the construction in Section 2.2 with $\mathcal{X} = [0, b]$

<table>
<thead>
<tr>
<th>m</th>
<th>Spline</th>
<th>ϕ_ν</th>
<th>R_0</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear</td>
<td>1</td>
<td>$x \wedge z$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cubic</td>
<td>$1, x$</td>
<td>$1 + xz$</td>
<td>$(x \wedge z)^2 {3(x \vee z) - x \wedge z}/6$</td>
</tr>
</tbody>
</table>

Functions `linear2` and `cubic2` in the `assist` package compute evaluations of R_1 in Table 2.1 for linear and cubic splines, respectively. Functions for higher-order polynomial splines are also available. Note that the domain for functions `linear2` and `cubic2` is $\mathcal{X} = [0, b]$ for any fixed $b > 0$. The RK on the general domain $\mathcal{X} = [a, b]$ can be calculated by a translation, for example, `cubic2(x-a)`.

To fit a cubic spline to the motorcycle data, one may create matrices T and Σ first and then call the `ssr` function:

```r
> T <- cbind(1, times)
> Sigma <- cubic2(times)
> ssr(accel~T-1, rk=Sigma)
```

The intercept is automatically included in the `formula` statement. Therefore, `T-1` is used to exclude the intercept since it is already included in the T matrix.

Since \mathcal{L}_i are evaluational functionals for the motorcycle example, the `ssr` function can be called directly:

```r
> ssr(accel~times, rk=cubic2(times))
```

The inputs for `formula` and `rk` can be modified for fitting polynomial splines of different orders. For example, the following statements fit linear, quintic ($m = 3$), and septic ($m = 4$) splines:

```r
> ssr(accel~1, rk=linear2(times))
> ssr(accel~times+I(times^2), rk=quintic2(times))
> ssr(accel~times+I(times^2)+I(times^3), rk=septic2(times))
```

The linear and cubic spline fits are shown in Figure 2.1.
2.6 Another Construction for Polynomial Splines

One construction of RKHS for the polynomial spline was presented in Section 2.2. This section presents an alternative construction for $W^m_2[0,1]$ on the domain $X = [0,1]$. In practice, without loss of generality, a continuous interval $[a,b]$ can always be transformed into $[0,1]$.

Let $k_r(x) = B_r(x)/r!$ be scaled Bernoulli polynomials where B_r are defined recursively by $B_0(x) = 1$, $B'_r(x) = rB_{r-1}(x)$ and $\int_0^1 B_r(x)dx = 0$ for $r = 1, 2, \ldots$ (Abramowitz and Stegun 1964). The first four scaled Bernoulli polynomials are

$$
\begin{align*}
 k_0(x) &= 1, \\
 k_1(x) &= x - 0.5, \\
 k_2(x) &= \frac{1}{2}\left(k_1^2(x) - \frac{1}{12}\right), \\
 k_4(x) &= \frac{1}{24}\left(k_1^4(x) - \frac{1}{2}k_2^2(x) + \frac{7}{240}\right).
\end{align*}
$$

(2.27)

Alternative model space construction and decomposition of $W^m_2[0,1]$.

The Sobolev space $W^m_2[0,1]$ is an RKHS with the inner product

$$
(f, g) = \sum_{\nu=0}^{m-1} \left(\int_0^1 f^{(\nu)}dx\right) \left(\int_0^1 g^{(\nu)}dx\right) + \int_0^1 f^{(m)}g^{(m)}dx.
$$

(2.28)
Furthermore, $W_2^m[0,1] = \mathcal{H}_0 \oplus \mathcal{H}_1$, where

\[
\mathcal{H}_0 = \text{span}\{k_0(x), k_1(x), \ldots, k_{m-1}(x)\},
\]

\[
\mathcal{H}_1 = \{ f : \int_0^1 f^{(\nu)} dx = 0, \ \nu = 0, \ldots, m-1, \int_0^1 (f^{(m)})^2 dx < \infty \},
\]

are RKHS’s with corresponding RKs

\[
R_0(x,z) = \sum_{\nu=0}^{m-1} k_{\nu}(x)k_{\nu}(z),
\]

\[
R_1(x,z) = k_m(x)k_m(z) + (-1)^{m-1}k_{2m}(|x-z|).
\]

The foregoing alternative construction was derived by Craven and Wahba (1979). Note that the inner product (2.28) is different from (2.2). Again, \mathcal{H}_0 contains polynomials, and the basis listed in (2.29), $\phi_{\nu}(x) = k_{\nu-1}(x)$ for $\nu = 1, \ldots, m$, is an orthonormal basis of \mathcal{H}_0. Denote P_1 as the orthogonal projection operator onto \mathcal{H}_1. From the definition of the inner product, the roughness penalty $\int_0^1 (f^{(m)})^2 dx = \|P_1 f\|^2$.

Based on (2.29) and (2.30), Table 2.2 lists bases for the null spaces and RKs of linear and cubic splines under the alternative construction in this section.

TABLE 2.2 Bases of the null spaces and RKs for linear and cubic splines under the construction in Section 2.6 with $X = [0,1]$

<table>
<thead>
<tr>
<th>m</th>
<th>Spline</th>
<th>ϕ_{ν}</th>
<th>R_0</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear</td>
<td>1</td>
<td>1</td>
<td>$k_1(x)k_1(z) + k_2(</td>
</tr>
<tr>
<td>2</td>
<td>Cubic</td>
<td>1, $k_1(x)$</td>
<td>1 + $k_1(x)k_1(z)$</td>
<td>$k_2(x)k_2(z) - k_4(</td>
</tr>
</tbody>
</table>

Functions `linear` and `cubic` in the `assist` package compute evaluations of R_1 in Table 2.2 for linear and cubic splines respectively. Functions for higher-order polynomial splines are also available. Note that the domain under construction in this section is restricted to $[0,1]$. Thus the `scale` option is needed when the domain is not $[0,1]$. For example, the following statements fit linear and cubic splines to the motorcycle data:
2.7 Periodic Splines

Many natural phenomena follow a cyclic pattern. For example, many biochemical, physiological, or behavioral processes in living beings follow a daily cycle called circadian rhythm, and many Earth processes follow an annual cycle. In these cases the mean function \(f \) is known to be a smooth periodic function. Without loss of generality, assume that the domain of the function \(X = [0, 1] \) and \(f \) is a periodic function on \([0, 1]\). Since periodic functions can be regarded as functions defined on the unit circle, periodic splines are often referred to as splines on the circle.

The model space for periodic spline of order \(m \) is

\[
W^m_{2}(\text{per}) = \{ f : f^{(j)} \text{ are absolutely continuous, } f^{(j)}(0) = f^{(j)}(1), \text{ } j = 0, \ldots, m-1, \text{ } \int_{0}^{1} (f^{(m)})^2 dx < \infty \}. \tag{2.31}
\]

Craven and Wahba (1979) derived the following construction.

Model space construction and decomposition of \(W^m_{2}(\text{per}) \)

The space \(W^m_{2}(\text{per}) \) is an RKHS with inner product

\[
(f, g) = \left(\int_{0}^{1} f dx \right) \left(\int_{0}^{1} g dx \right) + \int_{0}^{1} f^{(m)} g^{(m)} dx.
\]

Furthermore, \(W^m_{2}(\text{per}) = \mathcal{H}_0 \oplus \mathcal{H}_1 \), where

\[
\mathcal{H}_0 = \text{span}\{1\},
\]

\[
\mathcal{H}_1 = \{ f \in W^m_{2}(\text{per}) : \int_{0}^{1} f dx = 0 \}. \tag{2.32}
\]
are RKHS's with corresponding RKs

\[R_0(x, z) = 1, \]
\[R_1(x, z) = (-1)^{m-1}k_{2m}(|x - z|). \] (2.33)

Again, the roughness penalty \(\int_0^1 (f^{(m)})^2 dx = \|P_1 f\|^2 \). The function periodic in the assist library calculates \(R_1 \) in (2.33). The order \(m \) is specified by the argument order. The default is a cubic periodic spline with order=2.

We now illustrate how to fit a periodic spline using the Arosa data, which contain monthly mean ozone thickness (Dobson units) in Arosa, Switzerland, from 1926 to 1971. Suppose we want to investigate how ozone thickness changes over months in a year. It is reasonable to assume that the mean ozone thickness is a periodic function of month. Let thick be the dependent variable and \(x \) be the independent variable month scaled into the interval \([0, 1]\). The following statements fit a cubic periodic spline:

```r
> data(Arosa); Arosa$x <- (Arosa$month-0.5)/12
> ssr(thick~1, rk=periodic(x), data=Arosa)
```

The fit of the periodic spline is shown in Figure 2.2.

![Figure 2.2](image-url)
2.8 Thin-Plate Splines

Suppose \(f \) is a function of a multivariate independent variable \(\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d \), where \(\mathbb{R}^d \) is the Euclidean d-space. Assume the regression model

\[
y_i = f(\mathbf{x}_i) + \epsilon_i, \quad i = 1, \ldots, n,
\]

where \(\mathbf{x}_i = (x_{i1}, \ldots, x_{id}) \) and \(\epsilon_i \) are zero-mean independent random errors with a common variance \(\sigma^2 \).

Define the model space for a thin-plate spline as

\[
W'^m_2(\mathbb{R}^d) = \{ f : J_m^d(f) < \infty \},
\]

where

\[
J_m^d(f) = \sum_{\alpha_1 + \cdots + \alpha_d = m} \frac{m!}{\alpha_1! \cdots \alpha_d!} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{\partial^m f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} \right)^2 \prod_{j=1}^d dx_j.
\]

Since \(J_m^d(f) \) is invariant under a rotation of the coordinates, the thin-plate spline is especially well suited for spatial data (Wahba 1990, Gu 2002).

Define an inner product as

\[
(f, g) = \sum_{\alpha_1 + \cdots + \alpha_d = m} \frac{m!}{\alpha_1! \cdots \alpha_d!} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{\partial^m f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} \right) \left(\frac{\partial^m g}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} \right) \prod_{j=1}^d dx_j.
\]

Model space construction of \(W'^m_2(\mathbb{R}^d) \)

With the inner product (2.37), \(W'^m_2(\mathbb{R}^d) \) is an RKHS if and only if \(2m - d > 0 \).

Details can be found in Duchon (1977) and Meinguet (1979). A thin-plate spline estimate is the minimizer to the PLS

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda J_m^d(f)
\]

in \(W'^m_2(\mathbb{R}^d) \). The null space \(\mathcal{H}_0 \) of the penalty functional \(J_m^d(f) \) is the space spanned by polynomials in \(d \) variables of total degree up to \(m - 1 \).
Thus the dimension of the null space \(p = \binom{d + m - 1}{d} \). For example, when \(d = 2 \) and \(m = 2 \),

\[
J_2(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\partial^2 f}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 + \left(\frac{\partial^2 f}{\partial x_2^2} \right)^2 \, dx_1 dx_2,
\]

and the null space is spanned by \(\phi_1(x) = 1, \phi_2(x) = x_1, \) and \(\phi_3(x) = x_2 \).

In general, denote \(\phi_1, \ldots, \phi_p \) as the \(p \) polynomials of total degree up to \(m - 1 \) that span \(H_0 \). Denote \(E_m \) as the Green function for the \(m \)-iterated Laplacian \(E_m(x, z) = E(||x - z||) \), where \(||x - z|| \) is the Euclidean distance and

\[
E(u) = \begin{cases} (-1)^{\frac{d+1}{2}} |u|^{2m-d} \log |u|, & d \text{ even,} \\ |u|^{2m-d}, & d \text{ odd}. \end{cases}
\]

Let \(T = \{ \phi_{\nu}(x_i) \}_{i=1}^n \) and \(K = \{ E_m(x_i, x_j) \}_{i,j=1}^n \). The bivariate function \(E_m \) is not the RK of \(W_2^m(\mathbb{R}^d) \) since it is not nonnegative definite. Nevertheless, it is conditionally nonnegative definite in the sense that \(T^T c = 0 \) implies that \(c^T K c \geq 0 \). Referred to as a semi-kernel, the function \(E_m \) is sufficient for the purpose of estimation. Assume that \(T \) is of full column rank. It can be shown that the unique minimizer of the PLS (2.38) is given by (Wahba 1990, Gu 2002)

\[
\hat{f}(x) = \sum_{\nu=1}^p d_{\nu} \phi_{\nu}(x) + \sum_{i=1}^n c_i \xi_i(x), \quad (2.39)
\]

where \(\xi_i(x) = E_m(x_i, x) \). Therefore, \(E_m \) plays the same role as the RK \(R_1 \). The coefficients \(c \) and \(d \) are solutions to

\[
(K + n\lambda I) c + T d = y, \\
T^T c = 0. \quad (2.40)
\]

The above equations have the same form as those in (2.21). Therefore, computations in Section 2.4 carry over with \(\Sigma \) being replaced by \(K \). The semi-kernel \(E_m \) is calculated by the function \texttt{tp.pseudo} in the \texttt{assist} package. The order \(m \) is specified by the \texttt{order} argument with default as \texttt{order=2}.

The USA climate data contain average winter temperatures in 1981 from 1214 stations in USA. To investigate how average winter temperature (\texttt{temp}) depends on geological locations (\texttt{long} and \texttt{lat}), we fit a thin-plate spline as follows:

```r
> attach(USAtemp)
> ssr(temp~long+lat, rk=tp.pseudo(list(long,lat)))
```
FIGURE 2.3 USA climate data, contour plot of the thin-plate spline fit.

The contour plot of the fit is shown in Figure 2.3.

A genuine RK for $W^m_m(\mathbb{R}^d)$ is needed later in the computation of posterior variances in Chapter 3 and the construction of tensor product splines in Chapter 4. We now discuss briefly how to derive the genuine RK. Define inner product

$$ (f, g)_0 = \sum_{j=1}^{J} w_j f(u_j) g(u_j), \quad (2.41) $$

where u_j are fixed points in \mathbb{R}^d, and w_j are fixed positive weights such that $\sum_{j=1}^{J} w_j = 1$. Points u_j and weights w_j are selected in such a way that the matrix $\{ (\phi_\nu, \phi_\mu) \}_0^{p, p=1}$ is nonsingular. Let $\tilde{\phi}_\nu$, $\nu = 1, \ldots, p$, be an orthonormal basis derived from ϕ_ν with $\tilde{\phi}_1(x) = 1$. Let P_0 be the projection operator onto H_0 defined as $P_0 f = \sum_{\nu=1}^{p} (f, \phi_\nu) \phi_\nu$. Then it can be shown that (Gu 2002)

$$ R_0(x, z) = \sum_{\nu=1}^{p} \tilde{\phi}_\nu(x) \tilde{\phi}_\nu(z), \quad (2.42) $$

$$ R_1(x, z) = (I - P_0(x))(I - P_0(z))E(||x - z||) $$
are RKs of \mathcal{H}_0 and $\mathcal{H}_1 \triangleq W^m_2(\mathbb{R}^d) \ominus \mathcal{H}_0$, where $P_0(x)$ and $P_0(z)$ are projections applied to the arguments x and z, respectively.

Assume that $T = \{\phi_i(x_i)\}_{i=1}^n \subseteq \mathcal{H}_1$. One relatively simple approach to compute $\tilde{\phi}$ and Σ is to let $J = n$, $u_j = x_j$, and $w_j = n^{-1}$. It is easy to see that $\{\phi_{\nu}, \phi_{\mu}\}_0^{p,\mu} = n^{-1}T^TT$, which is nonsingular. Let

$$T = (Q_1 \ Q_2) \begin{pmatrix} R \ 0 \end{pmatrix}$$

be the QR decomposition of T. Then

$$(\tilde{\phi}_1(x), \ldots, \tilde{\phi}_p(x)) = \sqrt{n}(\phi_1(x), \ldots, \phi_p(x))R^{-1}$$

and

$$\Sigma = Q_2Q_2^T K Q_2Q_2^T.$$

The function tp computes evaluations of R_1 in (2.42) with $J = n$, $u_j = x_j$ and $w_j = n^{-1}$.

2.9 Spherical Splines

Spherical spline, also called spline on the sphere, is an extension of both the periodic spline defined on the unit circle and the thin-plate spline defined on \mathbb{R}^2. Let the domain be $\mathcal{X} = S$, where S is the unit sphere. Any point x on S can be represented as $x = (\theta, \phi)$, where θ ($0 \leq \theta \leq 2\pi$) is the longitude and ϕ ($-\pi/2 \leq \phi \leq \pi/2$) is the latitude. Define

$$J(f) = \begin{cases} \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} (\Delta^2 f)^2 \cos \phi d\phi d\theta, & m \text{ even}, \\
\int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \left(\frac{\Delta^m f}{\cos^2 \phi} \right)^2 + (\Delta^{m-1} f)^2 \cos \phi d\phi d\theta, & m \text{ odd}, \end{cases}$$

where the notation $(g)_z$ represents the partial derivative of g with respect to z, Δf represents the surface Laplacian on the unit sphere defined as

$$\Delta f = \frac{1}{\cos^2 \phi} f_{\theta \theta} + \frac{1}{\cos \phi} (\cos \phi f_{\phi})_{\phi}.$$

Consider the model space

$$W^m_2(S) = \left\{ f : \int_S f^2 \, dx < \infty, \ J(f) < \infty \right\}.$$
Model space construction and decomposition of $W^m_2(S)$

$W^m_2(S)$ is an RKHS when $m > 1$. Furthermore, $W^m_2(S) = \mathcal{H}_0 \oplus \mathcal{H}_1$, where

$$\mathcal{H}_0 = \text{span}\{1\},$$

$$\mathcal{H}_1 = \{f \in W^m_2(S) : \int_S f dx = 0\},$$

are RKHS’s with corresponding RKs

$$R_0(x,z) = 1,$$

$$R_1(x,z) = \sum_{i=1}^{\infty} \frac{2i+1}{4\pi} \frac{1}{i(i+1)} m G_i(\cos \gamma(x,z)),$$

where $\gamma(x,z)$ is the angle between x and z, and G_i are the Legendre polynomials.

Details of the above construction can be found in Wahba (1981). The penalty $||P_1 f||^2 = J(f)$. The RK R_1 is in the form of an infinite series, which is inconvenient to compute. Closed-form expressions are available only when $m = 2$ and $m = 3$. Wahba (1981) proposed replacing J by a topologically equivalent seminorm Q under which closed-form RKs can be derived. The function sphere in the assist package calculates R_1 under the seminorm Q for $2 \leq m \leq 6$. The argument order specifies m with default as order=2.

The world climate data contain average winter temperatures in 1981 from 725 stations around the globe. To investigate how average winter temperature (temp) depends on geological locations (long and lat), we fit a spline on the sphere:

```r
> data(climate)
> ssr(temp~1, rk=sphere(cbind(long,lat)), data=climate)
```

The contour plot of the spherical spline fit is shown in Figure 2.4.

2.10 Partial Splines

A partial spline model assumes that

$$y_i = s_i^T \beta + L_i f + \epsilon_i, \quad i = 1, \ldots, n,$$

(2.43)
where \(s \) is a \(q \)-dimensional vector of independent variables, \(\beta \) is a vector of parameters, \(\mathcal{L}_i \) are bounded linear functionals, and \(\epsilon_i \) are zero-mean independent random errors with a common variance \(\sigma^2 \). We assume that \(f \in \mathcal{H} \), where \(\mathcal{H} \) is an RKHS on an arbitrary domain \(X \). Model (2.43) contains two components: a parametric linear model and a non-parametric function \(f \). The partial spline model is a special case of the semiparametric linear regression model discussed in Chapter 8.

Suppose \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \), where \(\mathcal{H}_0 = \text{span}\{\phi_1, \ldots, \phi_p\} \) and \(\mathcal{H}_1 \) is an RKHS with RK \(R_1 \). Denote \(P_1 \) as the projection onto \(\mathcal{H}_1 \). The function \(f \) and parameters \(\beta \) are estimated as minimizers to the following PLS:

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - s_i^T \beta - \mathcal{L}_i f)^2 + \lambda \|P_1 f\|^2.
\]

(2.44)

Let \(S = (s_1, \ldots, s_n)^T \), \(T = \{\mathcal{L}_i \phi_i\}_{i=1}^{p} \), \(X = (S \ T) \), and \(\Sigma = \{\mathcal{L}_i(x) \mathcal{L}_j(z) R_1(x, z)\}_{i,j=1}^{n} \). Assume that \(X \) is of full column rank. Following similar arguments as in Section 2.4, it can be shown that the PLS (2.44) has a unique minimizer, and the solution of \(f \) is given in (2.18).
Therefore, the PLS (2.44) reduces to
\[\frac{1}{n} ||\mathbf{y} - \mathbf{X}\alpha - \Sigma\mathbf{c}||^2 + \lambda \mathbf{c}^T \Sigma \mathbf{c}, \]
where \(\alpha = (\beta^T, d^T)^T \). As in Section 2.4, we can solve \(\alpha \) and \(\mathbf{c} \) from the following equations:
\begin{align*}
(\Sigma + n\lambda I)\mathbf{c} + \mathbf{X}\alpha &= \mathbf{y}, \\
\mathbf{X}^T\mathbf{c} &= \mathbf{0}.
\end{align*}
(2.45)

The above equations have the same form as those in (2.21). Thus, computations in Section 2.4 carry over with \(T \) and \(d \) being replaced by \(\mathbf{X} \) and \(\alpha \), respectively. The \texttt{ssr} function can be used to fit partial splines.

When \(L_i \) are evaluational functionals, the partial spline model (2.43) can be fitted by adding \(s \) variables at the right-hand side of the formula argument. When \(L_i \) are not evaluational functionals, matrices \(\mathbf{X} \) and \(\Sigma \) need to be created and supplied in the \texttt{formula} and \texttt{rk} arguments.

One interesting application of the partial spline model is to fit a non-parametric regression model with potential change-points. A change-point is defined as a discontinuity in the mean function or one of its derivatives. Note that the function \(g(x) = (x - t)^k \) has a jump in its \(k \)th derivative at location \(t \). Therefore, it can be used to model change-points. Specifically, consider the following model
\begin{equation}
\begin{aligned}
y_i &= \sum_{j=1}^{J} \beta_j (x_i - t_j)^{k_j} + f(x_i) + \epsilon_i, \quad i = 1, \ldots, n, \\
\end{aligned}
\end{equation}
(2.46)

where \(x_i \in [a, b] \) are design points, \(t_j \in [a, b] \) are change-points, \(f \) is a smooth function, and \(\epsilon_i \) are zero-mean independent random errors with a common variance \(\sigma^2 \). The mean function in model (2.46) has a jump at \(t_j \) in its \(k_j \)th derivative with magnitude \(\beta_j \). The choice of model space for \(f \) depends on the application. For example, the polynomial or periodic spline space may be used. When \(t_j \) and \(k_j \) are known, model (2.46) is a special case of partial spline with \(q = J \), \(s_{ij} = (x_i - t_j)^{k_j} \), and \(s_i = (s_{i1}, \ldots, s_{iJ})^T \).

We now use the geyser data and motorcycle data to illustrate change-points detection using partial splines. For the geyser data, Figure 1.3(b) indicates that there may be a jump in the mean function between 2.5 and 3.5 minutes. Therefore, we consider the model
\begin{equation}
\begin{aligned}
y_i = \beta (x_i - t)^0 + f(x_i) + \epsilon_i, \quad i = 1, \ldots, n, \\
\end{aligned}
\end{equation}
(2.47)

where \(x_i \) are the duration variable scaled into [0, 1], \(t \) is a change-point, and \((x - t)^0 = 0 \) when \(x \leq t \) and 1 otherwise. We assume that \(f \in \)
For a fixed t, say $t = 0.397$, we can fit the partial spline as follows:

```r
> attach(faithful)
> x <- (eruptions-min(eruptions))/diff(range(eruptions))
> ssr(waiting~x+(x>.397), rk=cubic(x))
```

The partial spline fit is shown in Figure 2.5(a). No trend is shown in the residual plot in Figure 2.5(b).

The change-point is fixed at $t = 0.397$ in the above fit. Often it is unknown in practice. To search for the location of the change-point t, we compute AIC and GCV (generalized cross-validation) criteria on a grid points between 0.25 and 0.55:

```r
> aic <- gcv <- NULL
> for (t in seq(.25,.55,by=.001)) {
>     fit <- ssr(waiting~x+(x>t), rk=cubic(x))
>     aic <- c(aic, length(x)*log(sum(fit$resi**2))+2*fit$df)
>     gcv <- c(gcv, fit$rkpk.obj$score)
> }
```

The vector `fit$resi` contains residuals. The value `fit$df` represents the degrees of freedom ($\text{tr} H(\lambda)$) defined later in Chapter 3, Section 3.2. The GCV criterion is defined in (3.24). Figure 2.5(c) shows the AIC and GCV scores scaled into [0, 1]. The scaled scores are identical and reach the minimum in the same region with the middle point at $t = 0.397$.

FIGURE 2.5 Geyser data, plots of (a) observations (points), the partial spline fit (solid line) with 95% Bayesian confidence intervals (shaded region), (b) residuals (points) from the partial spline fit and the cubic spline fit (solid line) to the residuals, and (c) the AIC (dashed line) and GCV scores (solid line) scaled into [0, 1].
For the motorcycle data, it is apparent that the mean curve is flat on the left and there is a sharp corner around 15 ms. The linear and cubic splines fit this region with round corners (Figure 2.1). The sharp corner suggests that there may be a change-point in the first derivative of the mean function. Therefore, we consider the model

$$y_i = \beta(x_i - t) + f(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

(2.48)

where x is the time variable scaled into $[0, 1]$ and t is the change-point in the first derivative. We assume that $f \in W^2_2[0, 1]$. Again, we use the AIC and GCV criteria to search for the location of the change-point t. Figure 2.6(b) shows the scaled AIC and GCV scores. They both reach the minimum at $t = 0.214$. For the fixed $t = 0.214$, the model (2.48) can be fitted as follows:

```r
> t <- .214; s <- (x-t)*(x>t)
> ssr(accel~x+s, rk=cubic(x))
```

The partial spline fit is shown in Figure 2.6(a). The sharp corner around 15 ms is preserved. Chapter 3 contains more analysis of potential change-points for the motorcycle data.

FIGURE 2.6 Motorcycle data, plots of (a) observations (circles), the partial spline fit (solid line) with 95% Bayesian confidence intervals (shaded region), and (b) the AIC (dashed line) and GCV (solid line) scores scaled into $[0, 1]$.

Often, in practice, there is enough knowledge to model some components in the regression function parametrically. For other uncertain
components, it may be desirable to leave them unspecified. Combining parametric and nonparametric components, the partial spline (semiparametric) models are well suited to these situations.

As an illustration, consider the Arosa data. We have investigated how ozone thickness changes over months in a year by fitting a periodic spline (Figure 2.2). Suppose now we want to investigate how ozone thickness changes over time. That is, we need to consider both month (seasonal) effect and year (long-term) effect. Let x_1 and x_2 be the month and year variables scaled into the interval $[0, 1]$. For the purpose of illustration, suppose the seasonal trend can be well approximated by a simple sinusoidal function. The form of long-term trend will be left unspecified. Therefore, we consider the following partial spline model

$$y_i = \beta_1 + \beta_2 \sin(2\pi x_{i1}) + \beta_3 \cos(2\pi x_{i1}) + f(x_{i2}) + \epsilon_i, \quad i = 1, \ldots, 518,$$

(2.49)

where y_i represents the average ozone thickness in month x_{i1} of year x_{i2}, and $f \in W^2_2[0, 1] \ominus \{1\}$. Note that the constant functions are removed from the model space for f such that f is identifiable with the constant β_1. The partial spline model (2.49) can be fitted as follows:

```r
> x1 <- (Arosa$month-0.5)/12; x2 <- (Arosa$year-1)/45
> ssr(thick~sin(2*pi*x1)+cos(2*pi*x1)+x2, rk=cubic(x2))
```

Estimates of the main effect of month, $\hat{\beta}_2 \sin(2\pi x_{i1}) + \hat{\beta}_3 \cos(2\pi x_{i1})$, and the main effect of year, $\hat{f}(x_{i2})$, are shown in Figure 2.7. The simple sinusoidal model for the seasonal trend is too restrictive. More general models for the Arosa data can be found in Chapter 4, Section 4.9.2.

Functional data are observations in a form of functions. The most common forms of functional data are curves defined on a continuous interval and surfaces defined on \mathbb{R}^2. A functional linear model (FLM) is a linear model that involves functional data as (i) the independent variable, (ii) the dependent variable, or (iii) both independent and dependent variables. Many methods have been developed for fitting FLMs where functional data are curves or surfaces (Ramsay and Silverman 2005). We will use the Canadian weather data to illustrate how to fit FLMs using methods in this book. An FLM corresponding to situation (i) is discussed in this section. FLMs corresponding to situations (ii) and (iii) will be introduced in Chapter 4, Sections 4.9.3, and Chapter 8, Section 8.4.1, respectively. Note that methods illustrated in these sections for functional data apply to general functions defined on arbitrary domains. In particular, they can be used to fit surfaces defined on \mathbb{R}^2.

Now consider the Canadian weather data. To investigate the relationship between total annual precipitation and the temperature function,
consider the following FLM

\[y_i = \beta_1 + \int_0^1 w_i(x)f(x)dx + \epsilon_i, \quad i = 1, \ldots, 35, \quad (2.50) \]

where \(y_i \) is the logarithm of total annual precipitation at station \(i \), \(\beta_1 \) is a constant parameter, \(x \) is the variable \text{month} transformed into \([0, 1]\), \(w_i(x) \) is the temperature function at station \(i \), \(f(x) \) is an unknown weight function, and \(\epsilon_i \) are random errors. Model (2.50) is the same as model (15.2) in Ramsay and Silverman (2005). It is an example when the independent variable is a curve. The goal is to estimate the weight function \(f \). It is reasonable to assume that \(f \) is a smooth periodic function. Specifically, we model \(f \) using cubic periodic spline space \(W^2_{2\text{per}} \). Write \(f(x) = \beta_2 + f_1(x) \) where \(f_1 \in W^2_{2\text{per}} \cap \{1\} \). Then model (2.50) can be rewritten as a partial spline model

\[y_i = \beta_1 + \beta_2 \int_0^1 w_i(x)dx + \int_0^1 w_i(x)f_1(x)dx + \epsilon_i \]

\[\equiv s_i^T \beta + L_i f_1 + \epsilon_i, \quad (2.51) \]

where \(s_i = (1, \int_0^1 w_i(x)dx)^T \), \(\beta = (\beta_1, \beta_2)^T \), and \(L_i f_1 = \int_0^1 w_i(x)f_1(x)dx \). Assume that \(w_i \) are square integrable. Then \(L_i \) are bounded linear functionals. Let \(R_1 \) be the RK of \(W^2_{2\text{per}} \cap \{1\} \). From (2.14), the \((i, j)\)th
element of Σ equals

$$L_i(x)L_j(z)R_1(x,z) = \int_0^1 \int_0^1 w_i(s)w_j(t)R_1(s,t)dsdt \approx \frac{1}{144} \sum_{k=1}^{12} \sum_{l=1}^{12} w_i(x_k)w_j(x_l)R_1(x_k,x_l) = \frac{1}{144} w_i^T R_1(x,x)w_j,$$ \hspace{1cm} (2.52)$$

where x_k represents the middle point of month k, $x = (x_1, \ldots, x_{12})^T$, $R_1(x,x) = \{R_1(x_k,x_l)\}_{k,l=1}^{12}$, $w_i(x_k)$ is the temperature of month k at station i, and $w_i = (w_i(x_1), \ldots, w_i(x_{12}))^T$. The rectangle rule is used to approximate the integrals. More accurate approximations may be used. Let $W = (w_1, \ldots, w_{35})$. Then $\Sigma \approx W^T R_1(x,x)W/144$. The following statements fit the partial spline model (2.51):

```r
> library(fda); attach(CanadianWeather)
> y <- log(apply(monthlyPrecip,2,sum))
> W <- monthlyTemp
> s <- apply(W,2,mean)
> x <- seq(0.5,11.5,1)/12
> Sigma <- t(W)%*%periodic(x)%*%W/144
> canada.fit1 <- ssr(y~s, rk=Sigma, spar=''m'')
```

where the vector s contains elements $\sum_{j=1}^{12} w_i(x_j)/12$, which are approximations of $\int_0^1 w_i(x)dx$. The generalized maximum likelihood (GML) method in Chapter 3, Section 3.6, is used to select the smoothing parameter since the GCV estimate is too small due to small sample size. This is accomplished by setting the option `spar='m'`.

From equation (2.18), the estimate of the weight function is

$$\hat{f}(x) = d_2 + \sum_{i=1}^{35} c_i L_i(z)R_1(x,z),$$

where d_2 is an estimate of β_2. To compute \hat{f} at a set of points, say,
$x_0 = (x_{01}, \ldots, x_{0n_0})^T$, we have

$$\hat{f}(x_0) = d_2 1_{n_0} + \sum_{i=1}^{35} c_i \int_0^1 R_1(x_0, x) w_i(x) \, dx$$

$$\approx d_2 1_{n_0} + \sum_{i=1}^{35} c_i \sum_{j=1}^{12} R_1(x_0, x_j) w_i(x_j)/12$$

$$= d_2 1_{n_0} + \sum_{i=1}^{35} c_i R_1(x_0, x) w_i/12$$

$$= d_2 1_{n_0} + Sc,$$

where $\hat{f}(x_0) = (\hat{f}(x_{01}), \ldots, \hat{f}(x_{0n_0}))^T$, 1_m represents a m-vector of all ones, $R_1(x_0, x) = (R_1(x_{01}, x), \ldots, R_1(x_{0n_0}, x))^T$, $R_1(x_0, x) = \{R_1(x_0, x_j)\}_{i=1}^{35} \sum_{j=1}^{12}$, $S = R_1(x_0, x) W/12$, and $c = (c_1, \ldots, c_n)^T$. We compute $\hat{f}(x_0)$ at 50 equally spaced points in $[0, 1]$ as follows:

```r
> S <- periodic(seq(0,1,len=50),x)%*%W/12
> fhat <- canada.fit1$coef$d[2]+S%*%canada.fit1$coef$c
```

Figure 2.8 displays the estimated weight function and 95% bootstrap confidence intervals. The shape of the weight function is similar to that in Figure 15.5 of Ramsay and Silverman (2005). Note that monthly data are used in this book while daily data were used in Ramsay and Silverman (2005).

FIGURE 2.8 Canadian weather data, plot of the estimated weight function (solid line), and 95% bootstrap confidence intervals (shaded region).
2.11 \(L \)-splines

2.11.1 Motivation

In the construction of a smoothing spline model, one needs to decide the penalty functional or, equivalently, the null space \(\mathcal{H}_0 \) consisting of functions that are not penalized. The squared bias of the spline estimate satisfies the following inequality (Wahba, 1990, p. 59)

\[
\frac{1}{n} \sum_{i=1}^{n} \left\{ E(L_i \hat{f}) - L_i f \right\}^2 \leq \lambda \| P_1 f \|^2.
\]

That is, the squared bias is bounded by the distance of \(f \) to the null space \(\mathcal{H}_0 \). Therefore, selecting a penalty such that \(\| P_1 f \|^2 \) is small can lead to low bias in the spline estimate of the function. This is equivalent to selecting a null space \(\mathcal{H}_0 \) such that it is close to the true function. Ideally, one wants to choose \(\mathcal{H}_0 \) such that \(\| P_1 f \|^2 = 0 \), that is \(f \in \mathcal{H}_0 \). However, it is usually difficult, if not impossible, to specify such a parametric space in practice. Nevertheless, often there is prior information suggesting that \(f \) can be well approximated by a parametric model. That is, \(f \) can be close to, but not necessarily in, the space \(\mathcal{H}_0 \). Heckman and Ramsay (2000) called such a space a favored parametric model. \(L \)-splines allow us to incorporate this kind of indefinite information. \(L \)-splines can also be used to check or test parametric models (Chapter 3).

Consider functions on the domain \(\mathcal{X} = [a, b] \). Let \(L \) be the linear differential operator

\[
L = D^m + \sum_{j=0}^{m-1} \omega_j(x)D^j,
\]

(2.53)

where \(m \geq 1 \), \(D^j \) denotes the \(j \)th derivative operator, and \(\omega_j \) are continuous real-valued functions. The minimizer of the following PLS

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - L_i f)^2 + \lambda \int_{a}^{b} (L f)^2 dx
\]

is called an \(L \)-spline. Note that the penalty is in general different from that of a polynomial or periodic spline. To utilize the general estimation procedure developed in Section 2.4, we need to construct an RKHS such that the penalty \(\int_{a}^{b} (L f)^2 dx = \| P_1 f \|^2 \) with an appropriately defined inner product.
Suppose \(f \in W^m_2[a,b] \). Then \(Lf \) exists and is square integrable. Let \(H_0 = \{ f : Lf = 0 \} \) be the kernel of \(L \). Based on results from differential equations (Coddington 1961), there exist real-valued functions \(u_1, \ldots, u_m \in W^m_2[a,b] \) such that \(u_1, \ldots, u_m \) form a basis of \(H_0 \). Furthermore, the Wronskian matrix associated with \(u_1, \ldots, u_m \),

\[
W(x) = \begin{pmatrix}
 u_1(x) & u_2(x) & \cdots & u_m(x) \\
 u'_1(x) & u'_2(x) & \cdots & u'_m(x) \\
 \vdots & \vdots & \ddots & \vdots \\
 u^{(m-1)}_1(x) & u^{(m-1)}_2(x) & \cdots & u^{(m-1)}_m(x)
\end{pmatrix},
\]

is invertible for all \(x \). Define inner product

\[
(f, g) = \sum_{\nu=0}^{m-1} f^{(\nu)}(a) g^{(\nu)}(a) + \int_a^b (Lf)(Lg) dx. \tag{2.54}
\]

Equation (2.54) defines a proper inner product since \(f^{(\nu)}(a) = 0, \nu = 0, \ldots, m-1 \), and \(Lf = 0 \) leads to \(f = 0 \). Denote \(u^*(x) = (u_1^*(x), \ldots, u_m^*(x))^T \) the last column of \(W^{-1}(x) \) and

\[
G(x,s) = \begin{cases}
 u^T(x)u^*(s), & s \leq x, \\
 0, & s > x,
\end{cases}
\]

be the Green function associated with \(L \).

Model space construction and decomposition of \(W^m_2[a,b] \)

The space \(W^m_2[a,b] \) is an RKHS with inner product (2.54). Furthermore, \(W^m_2[a,b] = H_0 \oplus H_1 \), where

\[
H_0 = \text{span}\{u_1, \ldots, u_m\}, \\
H_1 = \{ f \in W^m_2[a,b] : f^{(\nu)}(a) = 0, \nu = 0, \ldots, m-1 \}, \tag{2.55}
\]

are RKHS’s with corresponding RKs

\[
R_0(x,z) = u^T(x)\{W^T(a)W(a)\}^{-1}u(z), \\
R_1(x,z) = \int_a^b G(x,s)G(z,s) ds. \tag{2.56}
\]

The above construction of an \(L \)-spline is based on a given differential operator \(L \). In practice, rather than a differential operator, prior knowledge may be in a form of basis functions for the null space \(H_0 \).
Specifically, suppose prior knowledge suggests that f can be well approximated by a parametric space spanned by a basis u_1, \ldots, u_m. Then one can solve the following equations to derive coefficients ω_j in (2.53):

\[(Lu_\nu)(x) = u_\nu^{(m)}(x) + \sum_{j=0}^{m-1} \omega_j(x)u_j^{(j)}(x) = 0, \quad \nu = 1, \ldots, m.\]

Let $W(x)$ be the Wronskian matrix, $\omega(x) = (\omega_0(x), \ldots, \omega_{m-1}(x))^T$, and $u^{(m)}(x) = (u_1^{(m)}(x), \ldots, u_m^{(m)}(x))^T$. Then the above equations can be written in a matrix form: $W^T(x)\omega(x) = -u^{(m)}(x)$. Assume that $W(x)$ is invertible. Then $\omega(x) = -W^{-T}(x)u^{(m)}(x)$.

It is clear that the polynomial spline is a special case with $L = D^m$. Some special L-splines are discussed in the following subsections. More details can be found in Schumaker (2007), Wahba (1990), Dalzell and Ramsay (1993), Heckman (1997), Gu (2002), and Ramsay and Silverman (2005).

2.11.2 Exponential Spline

Assume that $f \in W^2_{\gamma}(a, b]$. Suppose prior knowledge suggests that f can be well approximated by a linear combination of 1 and $\exp(-\gamma x)$ for a fixed $\gamma \neq 0$. Consider the parametric model space

$$\mathcal{H}_0 = \text{span}\{1, \exp(-\gamma x)\}.$$

It is easy to see that \mathcal{H}_0 is the kernel of the differential operator $L = D^2 + \gamma D$. Nevertheless, we derive this operator following the procedure discussed in Section 2.11.1. Let $u_1(x) = 1$ and $u_2(x) = \exp(-\gamma x)$. The Wronskian matrix

$$W(x) = \begin{pmatrix} 1 & \exp(-\gamma x) \\ 0 & -\gamma \exp(-\gamma x) \end{pmatrix}.$$

Then

$$\begin{pmatrix} \omega_0(x) \\ \omega_1(x) \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ -\frac{1}{\gamma} & -\frac{1}{\gamma} \exp(\gamma x) \end{pmatrix} \begin{pmatrix} 0 \\ \gamma^2 \exp(-\gamma x) \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{\gamma} \end{pmatrix}.$$

Thus we have

$$L = D^2 + \gamma D.$$

Since

$$\{W(a)^TW(a)\}^{-1} = \begin{pmatrix} 1 + \frac{1}{\gamma^2} & -\frac{1}{\gamma^2} \exp(\gamma a) \\ -\frac{1}{\gamma^2} \exp(\gamma a) & \frac{1}{\gamma^2} \exp(2\gamma a) \end{pmatrix},$$
the RK of \(\mathcal{H}_0 \)

\[
\begin{align*}
R_0(x, z) &= 1 + \frac{1}{\gamma^2} - \frac{1}{\gamma^2} \exp(-\gamma x^*) - \frac{1}{\gamma^2} \exp(-\gamma z^*) \\
&\quad + \frac{1}{\gamma^2} \exp(-\gamma (x^* + z^*)),
\end{align*}
\] (2.57)

where \(x^* = x - a \) and \(z^* = z - a \).

The Green function

\[
G(x, s) = \begin{cases}
\frac{1}{\gamma}[1 - \exp(-\gamma(x - s))], & s \leq x, \\
0, & s > x.
\end{cases}
\]

Thus the RK of \(\mathcal{H}_1 \)

\[
R_1(x, z) = \int_a^b G(x, s)G(z, s)ds
\]

\[
= \int_0^{x^* \wedge z^*} \frac{1}{\gamma^2} [1 - \exp(-\gamma(x^* - s^*))][1 - \exp(-\gamma(z^* - s^*))] ds^* \\
= \frac{1}{\gamma^3} \left\{ \gamma(x^* \wedge z^*) + \exp(-\gamma x^*) + \exp(-\gamma z^*) \\
- \exp\{\gamma(x^* \wedge z^* - x^*)\} - \exp\{\gamma(x^* \wedge z^* - z^*)\} \\
- \frac{1}{2} \exp(-\gamma(x^* + z^*)) + \frac{1}{2} \exp[\gamma(2(x^* + z^*) - x^* - z^*)] \right\}.
\] (2.58)

Evaluations of the RK \(R_1 \) for some simple \(L \)-splines can be calculated using the \texttt{lspine} function in the \texttt{assist} package. The argument \texttt{type} specifies the type of an \(L \)-spline. The option \texttt{type} = ‘\texttt{exp}’ computes \(R_1 \) in (2.58) for the special case when \(a = 0 \) and \(\gamma = 1 \). For general \(a \) and \(\gamma \neq 0 \), the RK \(R_1 \) can be computed using a simple transformation \(\tilde{x} = \gamma (x - a) \).

The weight loss data contain weight measurements of a male obese patient since the start of a weight rehabilitation program. We now illustrate how to fit an exponential spline to the weight loss data. Observations are shown in Figure 2.9(a). Let \(y = \text{Weight} \) and \(x = \text{Days} \). We first fit a nonlinear regression model as in Venables and Ripley (2002):

\[
y_i = \beta_1 + \beta_2 \exp(-\beta_3 x_i) + \epsilon_i, \quad i = 1, \ldots, 51.
\] (2.59)

The following statements fit model (2.59):

\begin{verbatim}
> library(MASS); attach(wtloss)
> y <- Weight; x <- Days
> weight.nls <- nls(y~b1+b2*exp(-b3*x),
 start=list(b1=81,b2=102,b3=.005))
\end{verbatim}
The fit is shown in Figure 2.9(a).

FIGURE 2.9 Weight loss data, plots of (a) observations (circles), the nonlinear regression fit (dotted line), the cubic spline fit (dashed line), and the exponential spline fit (solid line); and (b) the cubic spline fit and 95% Bayesian confidence intervals minus the nonlinear regression fit as dashed lines, and the exponential spline fit and 95% Bayesian confidence intervals minus the nonlinear regression fit as solid lines.

Next we consider the nonparametric regression model (1.1). It is reasonable to assume that the regression function can be well approximated by $\mathcal{H}_0 = \text{span}\{1, \exp(-\gamma x)\}$, where $\gamma = \hat{\beta}_3 = 0.0048$ is the LS estimate of β_3 in the model (2.59). We now fit the exponential spline:

```r
> r <- coef(weight.nls)[3]
> ssr(y~exp(-r*x), rk=lspline(r*x,type='exp'))
```

The exponential spline fit in Figure 2.9(a) is essentially the same as that from nonlinear regression model. The parameter β_3 is fixed as $\hat{\beta}_3$ in the above construction of the exponential spline. One may treat β_3 as a parameter and estimate it using the GCV criterion as in Gu (2002):

```r
> gcv.fun <- function(r) ssr(y~exp(-r*x),
           rk=lspline(r*x,type='exp'))$rkpk.obj$score
> nlm(gcv.fun,.001)$estimate
0.00484513
```

For comparison, the cubic spline fit is also shown in Figure 2.9(a). To look at the difference between cubic and exponential splines more closely, we plot their fits and 95% Bayesian confidence intervals minus...
the fit from nonlinear regression in Figure 2.9(b). It is clear that the confidence intervals for the exponential spline are narrower.

Figure 2.9 is essentially the same as Figure 4.3 in Gu (2002). A different approach was used to fit the exponential spline in Gu (2002): it is shown that fitting the exponential spline is equivalent to fitting a cubic spline to the transformed variable \(\tilde{x} = 1 - \exp(-\gamma x) \). Thus the following statements lead to the same fit to the exponential spline:

\[
\text{> tx <- 1-\exp(-r*x)}
\]

\[
\text{> ssr(y~tx, rk=cubic2(tx))}
\]

2.11.3 Logistic Spline

Assume that \(f \in W^2_2[a, b] \). Suppose prior knowledge suggests that \(f \) can be well approximated by a logistic model

\[
H_0 = \text{span}\{1/(1+\delta \exp(-\gamma x))\}
\]

for some fixed \(\delta > 0 \) and \(\gamma > 0 \). It is easy to see that \(H_0 \) is the kernel of the differential operator

\[
L = D - \frac{\delta \gamma \exp(-\gamma x)}{1 + \delta \exp(-\gamma x)}
\]

The Wronskian is an \(1 \times 1 \) matrix

\[
W(x) = \left\{ \begin{array}{ll}
1 + \delta \exp(-\gamma x) & \text{if } x \leq a, \\
0 & \text{if } x > a.
\end{array} \right.
\]

Thus the RK of \(H_0 \)

\[
R_0(x, z) = \frac{\{1 + \delta \exp(-\gamma a)\}^2}{\{1 + \delta \exp(-\gamma x)\}\{1 + \delta \exp(-\gamma z)\}}.
\] \hspace{1cm} (2.60)

The Green function

\[
G(x, s) = \left\{ \begin{array}{ll}
\frac{1 + \delta \exp(-\gamma s)}{1 + \delta \exp(-\gamma x)} & \text{if } s \leq x, \\
0 & \text{if } s > x.
\end{array} \right.
\]

Thus the RK of \(H_1 \)

\[
R_1(x, z) = \{1 + \delta \exp(-\gamma x)\}^{-1}\{1 + \delta \exp(-\gamma z)\}^{-1}
\]

\[
\{x \land z - a + 2\delta \gamma^{-1}\exp(-\gamma a) - \exp(-\gamma (x \land z))\}
\]

\[
+\delta^2(2\gamma)^{-1}\{\exp(-2\gamma a) - \exp(-2\gamma (x \land z))\}.
\] \hspace{1cm} (2.61)

The paramecium caudatum data consist of growth of paramecium caudatum population in the medium of Osterhout. We now illustrate how to fit a logistic spline to the paramecium caudatum data. Observations are shown in Figure 2.10. Let \(y = \text{density} \) and \(x = \text{days} \). We first fit the following logistic growth model

\[
y_i = \frac{\beta_1}{1 + \beta_2 \exp(-\beta_3 x)} + \epsilon_i, \quad i = 1, \ldots, 25,
\] \hspace{1cm} (2.62)
using the statements

```r
> data(paramecium); attach(paramecium)
> para.nls <- nls(density~b1/(1 + b2*exp(-b3*day)),
                  start=list(b1=202,b2=164,b3=0.74))
```

Initial values are the estimates in Neal (2004). The fit is shown in Figure 2.10.

![Figure 2.10](image)

FIGURE 2.10 Paramecium caudatum data, observations (circles), the nonlinear regression fit (dotted line), the cubic spline fit (dashed line), and the logistic spline fit (solid line).

Now we consider the nonparametric regression model (2.7). It is reasonable to assume that the regression function can be well approximated by $H_0 = \text{span}\{1/(1 + \delta \exp(-\gamma x))\}$, where $\delta = \hat{\beta}_2 = 705.9496$ and $\gamma = \hat{\beta}_3 = 0.9319$ are the LS estimates in model (2.62).

The option `type=''logit''` in the `lspline` function computes R_1 in (2.61) for the special case when $a = 0$, $\delta = 1$, and $\gamma = 1$. It cannot be adapted to compute R_1 for the general situation. We take this opportunity to show how to write a function for computing an RK.

```r
> logit.rk <- function(x,a,d,r) {
    tmp1 <- x%o%rep(1,length(x))
    tmp2 <- (tmp1+t(tmp1)-abs(tmp1-t(tmp1)))/2
    tmp3 <- exp(-r*a)-exp(-r*tmp2)
    tmp4 <- exp(-2*r*a)-exp(-2*r*tmp2)
}
```
tmp5 <- 1/((1+d*exp(-r*x))%o%(1+d*exp(-r*x)))
(tmp2-a+2*d*tmp3/r+d**2*tmp4/(2*r))*tmp5
>
> bh <- coef(para.nls)
> ssr(density~I(1/(1+bh[2]*exp(-bh[3]*day)))-1,
rk=logit.rk(day,0,bh[2],bh[3]),spar='m')

The function logit.rk computes R_1 in (2.61). Since the sample size is small, the GML method is used to select the smoothing parameter. The logistic spline fit is shown in Figure 2.10. The fit is essentially the same as that from the logistic growth model (2.62). For comparison, the cubic spline fit is also shown in Figure 2.10. The logistic spline fit smooths out oscillations after 10 days while the cubic spline fit preserves them.

To include the constant function in H_0, one may consider the operator

$$L = D \left\{ D - \frac{\delta \gamma \exp(-\gamma x)}{1 + \delta \exp(-\gamma x)} \right\}.$$

Details of this situation can be found in Gu (2002).

2.11.4 Linear-Periodic Spline

Assume that $f \in W^4_2[a,b]$. Suppose prior knowledge suggests that f can be well approximated by a parametric model

$$H_0 = \text{span}\{1, x, \cos x, \sin x\}.$$

It is easy to check that H_0 is the kernel of the differential operator

$$L = D^4 + D^2.$$

The Wronskian matrix and its inverse are, respectively,

$$W(x) = \begin{pmatrix} 1 & x & \cos x & \sin x \\ 0 & 1 & -\sin x & \cos x \\ 0 & 0 & -\cos x & -\sin x \\ 0 & 0 & \sin x & -\cos x \end{pmatrix}$$

and

$$W^{-1}(x) = \begin{pmatrix} 1 & -x & 1 & -x \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -\cos x & \sin x \\ 0 & 0 & -\sin x & -\cos x \end{pmatrix}.$$

For simplicity, suppose $a = 0$. Then

$$\{W^T(0)W(0)\}^{-1} = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$
Therefore, the RK of H_0

\[
R_0(x, z) = 2 - \cos x - \cos z + 2xz - x \sin z - z \sin x + \cos x \cos z + \sin x \sin z. \tag{2.63}
\]

The Green function

\[
G(x, s) = \begin{cases}
 x - s - \sin(x - s), & s \leq x, \\
 0, & s > x.
\end{cases}
\]

Thus the RK of H_1

\[
R_1(x, z) = -\frac{1}{6} (x \wedge z)^3 + \frac{1}{2}xz(x \wedge z) - |x - z| - \sin x - \sin z + x \cos z + z \cos x + \frac{1}{2} (x \wedge z) \cos(z - x) + \frac{5}{4} \sin |x - z| - \frac{1}{4} \sin(x + z). \tag{2.64}
\]

The option `type='linSinCos'` in the `lspline` function computes R_1 in (2.64) for the special case when $a = 0$. The translation $x - a$ may be used when $a \neq 0$. When the null space $H_0 = \text{span}\{1, x, \cos \tau x, \sin \tau x\}$ for a fixed $\tau \neq 0$, the corresponding differential operator is $L = D^4 + \tau^2 D^2$. The linear-periodic spline with a general τ can be fitted using the transformation $\tilde{x} = \tau x$.

The melanoma data contain numbers of melanoma cases per 100,000 in Connecticut from 1936 to 1972. We now illustrate how to fit a linear-periodic spline to the melanoma data. The observations are shown in Figure 2.11. There are two apparent trends: a nearly linear long-term trend over the years, and a cycle of around 10 years corresponding to the sunspot cycle. Let $y =$ cases and $x =$ year. As in Heckman and Ramsay (2000), we fit a linear-periodic spline with $L = D^4 + \tau^2 D^2$, where $\tau = 0.58$.

```r
> library(fda); attach(melanoma)
> x <- year-1936; y <- incidence
> tau <- .58; tx <- tau*x
> ssr(y~tx+cos(tx)+sin(tx),
rk=lspline(tx,type='linSinCos'), spar='m')
```

Again, since the sample size is small, the GML method is used to select the smoothing parameter. For comparison, the cubic spline fit with smoothing parameter selected by the GML method is also shown in Figure 2.11.
2.11.5 Trigonometric Spline

Suppose f is a periodic function on $X = [0, 1]$. Assume that $f \in W^{m}_{2}(\text{per})$. Then we have the Fourier expansion

$$f(x) = a_0 + \sum_{\nu=1}^{m-1} a_{\nu} \cos 2\pi \nu x + \sum_{\nu=1}^{m-1} b_{\nu} \sin 2\pi \nu x$$

$$= a_0 + \sum_{\nu=1}^{m-1} a_{\nu} \cos 2\pi \nu x + \sum_{\nu=1}^{m-1} b_{\nu} \sin 2\pi \nu x + \text{Rem}(x), \quad (2.65)$$

where the first three elements in (2.65) represent a trigonometric polynomial of degree $m - 1$ and $\text{Rem}(x) = \sum_{\nu=m}^{\infty} (a_{\nu} \cos 2\pi \nu x + b_{\nu} \sin 2\pi \nu x)$. The penalty used in Section 2.7 for a periodic spline corresponds to $L = D^{m}$ with kernel $\mathcal{H}_0 = \text{span}\{1\}$. That is, all nonconstant functions including those in the trigonometric polynomial are penalized. Analogous to the Taylor expansion and polynomial splines, one may want to include lower-degree trigonometric polynomials in the null space. The operator $L = D^{m}$ does not decompose $W^{m}_{2}(\text{per})$ into lower-degree trigonometric polynomials plus the remainder terms.

Now consider the null space

$$\mathcal{H}_0 = \text{span}\{1, \sin 2\pi \nu x, \cos 2\pi \nu x, \nu = 1, \ldots, m-1\}, \quad (2.66)$$

which includes trigonometric polynomials with degree up to $m - 1$. Assume that $f \in W^{m+1}_{2}(\text{per})$. It is easy to see that \mathcal{H}_0 is the kernel of the...
differential operator

\[L = D \prod_{\nu=1}^{m-1} \{ D^2 + (2\pi\nu)^2 \}. \quad (2.67) \]

Model space construction and decomposition of \(W_2^{m+1} (\text{per}) \)

The space \(W_2^{m+1} (\text{per}) \) is an RKHS with the inner product

\[
(f, g) = \left(\int_0^1 f dx \right) \left(\int_0^1 g dx \right) + \sum_{\nu=1}^{m-1} \left(\int_0^1 f \cos 2\pi\nu x dx \right) \left(\int_0^1 g \cos 2\pi\nu x dx \right) + \sum_{\nu=1}^{m-1} \left(\int_0^1 f \sin 2\pi\nu x dx \right) \left(\int_0^1 g \sin 2\pi\nu x dx \right) + \int_0^1 (Lf)(Lg) dx,
\]

where \(L \) is defined in (2.67). Furthermore, \(W_2^{m+1} (\text{per}) = \mathcal{H}_0 \oplus \mathcal{H}_1 \), where \(\mathcal{H}_0 \) is given in (2.66) and \(\mathcal{H}_1 = W_2^{m+1} (\text{per}) \ominus \mathcal{H}_0 \). \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \) are RKHS’s with corresponding RKs

\[
R_0(x, z) = 1 + \sum_{\nu=1}^{m-1} \cos \{ 2\pi(x - z) \},
\]

\[
R_1(x, z) = \sum_{\nu=m}^{\infty} \frac{2}{(2\pi)^{2m+2}} \left\{ \prod_{j=0}^{m-1} (j^2 - \nu^2)^{-2} \right\} \cos 2\pi\nu(x - z) \quad (2.68)
\]

Sometimes \(f \) satisfies the constraint \(\int_0^1 f dx = 0 \). This constraint can be handled easily by removing constant functions in the above construction. Specifically, let

\[
\mathcal{H}_0 = \text{span}\{ \sin 2\pi\nu x, \quad \cos 2\pi\nu x, \quad \nu = 1, \ldots, m - 1 \}. \quad (2.69)
\]

Assume that \(f \in W_2^m (\text{per}) \ominus \{1\} \). Then \(\mathcal{H}_0 \) is the kernel of the differential operator

\[
L = \prod_{\nu=1}^{m-1} \{ D^2 + (2\pi\nu)^2 \}. \quad (2.70)
\]
Model space construction and decomposition of $W_2^m(\text{per}) \odot \{1\}$

The space $W_2^m(\text{per}) \odot \{1\}$ is an RKHS with the inner product

$$(f, g) = \sum_{\nu=1}^{m-1} \left(\int_0^1 f \cos 2\pi \nu x \, dx \right) \left(\int_0^1 g \cos 2\pi \nu x \, dx \right) + \sum_{\nu=1}^{m-1} \left(\int_0^1 f \sin 2\pi \nu x \, dx \right) \left(\int_0^1 g \sin 2\pi \nu x \, dx \right) + \int_0^1 (Lf)(Lg) \, dx,$$

where L is defined in (2.70). Furthermore, $W_2^m(\text{per}) = H_0 \oplus H_1$, where H_0 is given in (2.69) and $H_1 = W_2^m(\text{per}) \odot \{1\} \ominus H_0$. H_0 and H_1 are RKHS's with RKs

$$R_0(x, z) = \sum_{\nu=1}^{m-1} \cos{2\pi (x - z)},$$

$$R_1(x, z) = \sum_{\nu=m}^{\infty} \frac{2}{(2\pi)^4 (m-1)} \left(\prod_{j=1}^{m-1} (j^2 - \nu^2)^{-2} \right) \cos{2\pi \nu (x - z)}.$$

In the linspline function, the options type='sine1' and type='sine0' compute RKs R_1 in (2.68) and (2.71), respectively.

We now use the Arosa data to show how to fit a trigonometric spline and illustrate its difference from periodic and partial splines. Suppose we want to investigate how ozone thickness changes over months in a year. We have fitted a cubic periodic spline with $f \in W_2^2(\text{per})$ in Section 2.7. Note that $W_2^2(\text{per}) = H_{10} \oplus H_{11}$, where $H_{10} = \{1\} \ominus H_0$ and $H_{11} = W_2^2(\text{per}) \ominus \{1\}$. Therefore, we can rewrite the periodic spline model as

$$y_i = f_{10}(x_i) + f_{11}(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

where f_{10} and f_{11} are projections onto H_{10} and H_{11}, respectively. The estimates of the overall function, $f_{10} + f_{11}$, and its projections f_{10} (parametric) and f_{11} (smooth) are shown in the first row of Figure 2.12.

It is apparent that the monthly pattern can be well approximated by a simple sinusoidal function in the model space

$$P = \text{span}\{1, \sin 2\pi x, \cos 2\pi x\}.$$

Suppose we want to check the departure from the parametric model P. One approach is to add the sine and cosine functions to the null space.
Arosa data, plots the overall fits (left), the parametric components (middle), and the smooth components (right) of the periodic spline (top), the partial spline (middle), and the L-spline (bottom). Parametric components represent components in the spaces \(H_{10}, \mathcal{P}, \) and \(\mathcal{P} \) for periodic spline, partial spline, and L-spline, respectively. Smooth components represent components in the spaces \(H_{11}, H_{11}, \) and \(W^{2}_2(\text{per}) \cap \mathcal{P} \) for periodic spline, partial spline, and L-spline, respectively. Dotted lines are 95% Bayesian confidence intervals.
\mathcal{H}_0 of the periodic spline. This leads to the following partial spline model

$$y_i = f_{20}(x_i) + f_{21}(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

(2.74)

where $f_{20} \in \mathcal{P}$ and $f_{21} \in \mathcal{H}_{11}$. The model (2.74) is fitted as follows:

```r
> ssr(thick~sin(2*pi*x)+cos(2*pi*x), rk=periodic(x))
```

The estimates of the overall function and its two components \hat{f}_{20} (parametric) and \hat{f}_{21} (smooth) are shown in the second row of Figure 2.12.

Another approach is to fit a trigonometric spline with $m = 2$:

$$y_i = f_{30}(x_i) + f_{31}(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

(2.75)

where $f_{30} \in \mathcal{P}$ and $f_{31} \in W_{3}^{2}(\text{per}) \ominus \mathcal{P}$. The model (2.75) is fitted as follows:

```r
> ssr(thick~sin(2*pi*x)+cos(2*pi*x),
    rk=lspline(x,type='sine1'))
```

The estimates of the overall function and its two components \hat{f}_{30} (parametric) and \hat{f}_{31} (smooth) are shown in the third row of Figure 2.12.

All three models have similar overall fits. However, their components are quite different. The smooth component of the periodic spline reveals the departure from a constant function. To check the departure from the simple sinusoidal model space \mathcal{P}, we can look at the smooth components from the partial and L-splines. Estimates of the smooth components from the partial and L-splines are similar. However, the confidence intervals based on the L-spline are narrower than those based on the partial spline. This is due to the fact that the two components f_{30} and f_{31} in the L-spline are orthogonal, while the two components f_{20} and f_{21} in the partial spline are not necessarily orthogonal. Therefore, we can expect the inference based on the L-spline to be more efficient in general.
Chapter 3

Smoothing Parameter Selection and Inference

3.1 Impact of the Smoothing Parameter

The penalized least squares (2.11) represents a compromise between the goodness-of-fit and a penalty to the departure from the null space H_0. The balance is controlled by the smoothing parameter λ. As λ varies from 0 to ∞, we have a family of estimates with $\hat{f} \in H_0$ when $\lambda = \infty$.

To illustrate the impact of the smoothing parameter, consider the Stratford weather data consisting of daily maximum temperatures in Stratford, Texas, during 1990. Observations are shown in Figure 3.1. Consider the regression model (1.1) where $n = 73$ and f represents expected maximum temperature as a function of time in a year. Denote x as the time variable scaled into $[0, 1]$. It is reasonable to assume that f is a smooth periodic function. In particular, we assume that $f \in W^2_2(\text{per})$.

For a fixed λ, say 0.001, one can fit the cubic periodic spline as follows:

```r
> data(Stratford); attach(Stratford)
> ssr(y~1, rk=periodic(x), llimnl=log10(73*.001))
```

where the argument `llimnl` specifies a search range for $\log_{10}(n\lambda)$. To see how a spline fit is affected by the choice of λ, periodic spline fits with six different values of λ are shown in Figure 3.1. It is obvious that the fit with $\lambda = \infty$ is a constant, that is, $f_\infty \in H_0$. The fit with $\lambda = 0$ interpolates data. A larger λ leads to a smoother fit. Both $\lambda = 0.0001$ and $\lambda = 0.00001$ lead to visually reasonable fits.

In practice it is desirable to select the smoothing parameter using an objective method rather than visual inspection. In a sense, a data-driven choice of λ allows data to speak for themselves. Thus, it is not exaggerating to say that the choice of λ is the spirit and soul of nonparametric regression.

We now inspect how λ controls the fit. Again, consider model (1.1) for Stratford weather data. Let us first consider a parametric approach that approximates f using a trigonometric polynomial up to a certain
degree, say k, where $0 \leq k \leq K$ and $K = (n - 1)/2 = 36$. Denote the corresponding parametric model space for f as

$$\mathcal{M}_k = \text{span}\{1, \sqrt{2}\sin 2\pi\nu x, \sqrt{2}\cos 2\pi\nu x, \nu = 1, \ldots, k\},$$

(3.1)

where $\mathcal{M}_0 = \text{span}\{1\}$. For a fixed k, write the regression model based on \mathcal{M}_k in a matrix form as

$$y = X_k\beta_k + \epsilon,$$

where

$$X_k = \begin{pmatrix}
1 & \sqrt{2}\sin 2\pi x_1 & \sqrt{2}\cos 2\pi x_1 & \cdots & \sqrt{2}\sin 2\pi k x_1 & \sqrt{2}\cos 2\pi k x_1 \\
1 & \sqrt{2}\sin 2\pi x_2 & \sqrt{2}\cos 2\pi x_2 & \cdots & \sqrt{2}\sin 2\pi k x_2 & \sqrt{2}\cos 2\pi k x_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \sqrt{2}\sin 2\pi x_n & \sqrt{2}\cos 2\pi x_n & \cdots & \sqrt{2}\sin 2\pi k x_n & \sqrt{2}\cos 2\pi k x_n
\end{pmatrix}$$

is the design matrix, $x_i = i/n$, $\beta_k = (\beta_1, \ldots, \beta_{2k+1})^T$, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T$. Since design points are equally spaced, we have the following

FIGURE 3.1 Stratford weather data, plot of observations, and the periodic spline fits with different smoothing parameters.
orthogonality relations:

\[
\frac{2}{n} \sum_{i=1}^{n} \cos 2\pi \nu x_i \cos 2\pi \mu x_i = \delta_{\nu, \mu}, \quad 1 \leq \nu, \mu \leq K,
\]

\[
\frac{2}{n} \sum_{i=1}^{n} \sin 2\pi \nu x_i \sin 2\pi \mu x_i = \delta_{\nu, \mu}, \quad 1 \leq \nu, \mu \leq K,
\]

\[
\frac{2}{n} \sum_{i=1}^{n} \cos 2\pi \nu x_i \sin 2\pi \mu x_i = 0, \quad 1 \leq \nu, \mu \leq K,
\]

where \(\delta_{\nu, \mu}\) is the Kronecker delta. Therefore, \(X_k^T X_k = nI_{2k+1}\), where \(I_{2k+1}\) is an identity matrix of size \(2k+1\). Note that \(X_k/\sqrt{n}\) is an orthogonal matrix. Define the discrete Fourier transformation \(\tilde{y} = X_k^T y/n\). Then the LS estimate of \(\beta_k\) is \(\hat{\beta}_k = (X_k^T X_k)^{-1} X_k^T y = X_k^T y/n = \tilde{y}_k\), where \(\tilde{y}_k\) consists of the first \(2k+1\) elements of the discrete Fourier transformation \(\tilde{y}\). More explicitly,

\[
\hat{\beta}_1 = \frac{1}{n} \sum_{i=1}^{n} y_i = \tilde{y}_1,
\]

\[
\hat{\beta}_{2\nu} = \frac{\sqrt{2}}{n} \sum_{i=1}^{n} y_i \sin 2\pi \nu x_i = \tilde{y}_{2\nu}, \quad 1 \leq \nu \leq k, \tag{3.2}
\]

\[
\hat{\beta}_{2\nu+1} = \frac{\sqrt{2}}{n} \sum_{i=1}^{n} y_i \cos 2\pi \nu x_i = \tilde{y}_{2\nu+1}, \quad 1 \leq \nu \leq k.
\]

Now consider modeling \(f\) using the cubic periodic spline space \(W^2_2(\text{per})\). The exact solution was given in Chapter 2. To simplify the argument, let us consider the following PLS

\[
\min_{f \in \mathcal{M}_K} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_0^1 (f'')^2 \, dx \right\}, \tag{3.3}
\]

where the model space \(W^2_2(\text{per})\) is approximated by \(\mathcal{M}_K\). The following discussion holds true for the exact solution in \(W^2_2(\text{per})\) (Gu 2002). However, the approximation makes the following argument simpler and transparent.

Let

\[
\hat{f}(x) = \hat{\alpha}_1 + \sum_{\nu=1}^{K} (\hat{\alpha}_{2\nu} \sqrt{2} \sin 2\pi \nu x + \hat{\alpha}_{2\nu+1} \sqrt{2} \cos 2\pi \nu x)
\]
be the solution to (3.3). Then \(\hat{f} = (\hat{f}(x_1), \ldots, \hat{f}(x_n))^T = X_K \hat{\alpha} \), where \(\hat{\alpha} = (\hat{\alpha}_1, \ldots, \hat{\alpha}_{2K+1})^T \). The LS

\[
\frac{1}{n} \| y - \hat{f} \|^2 = \frac{1}{n} \| \frac{1}{\sqrt{n}} X_K (y - \hat{f}) \|^2 = \| \frac{1}{\sqrt{n}} X_K y - \frac{1}{\sqrt{n}} X_K X_K \hat{\alpha} \|^2 = \| \tilde{y} - \hat{\alpha} \|^2.
\]

Thus (3.3) reduces to the following ridge regression problem

\[
(\hat{\alpha}_1 - \tilde{y}_1)^2 + \sum_{\nu=1}^{K} \left\{ (\hat{\alpha}_{2\nu} - \tilde{y}_{2\nu})^2 + (\hat{\alpha}_{2\nu+1} - \tilde{y}_{2\nu+1})^2 \right\} + \lambda \sum_{\nu=1}^{K} (2\pi\nu)^4 (\hat{\alpha}_{2\nu}^2 + \hat{\alpha}_{2\nu+1}^2).
\]

(3.4)

The solutions to (3.4) are

\[
\hat{\alpha}_1 = \tilde{y}_1,
\hat{\alpha}_{2\nu} = \frac{\tilde{y}_{2\nu}}{1 + \lambda (2\pi\nu)^4}, \quad \nu = 1, \ldots, K,
\hat{\alpha}_{2\nu+1} = \frac{\tilde{y}_{2\nu+1}}{1 + \lambda (2\pi\nu)^4}, \quad \nu = 1, \ldots, K.
\]

(3.5)

Thus the periodic spline is essentially a low-pass filter: components at frequency \(\nu \) are downweighted by a factor of \(1 + \lambda (2\pi\nu)^4 \). Figure 3.2 shows how \(\lambda \) controls the nature of the filter: more high frequencies are filtered out as \(\lambda \) increases. Comparing (3.2) and (3.5), it is clear that selecting an order \(k \) for the trigonometric polynomial model may be viewed as hard thresholding, and selecting the smoothing parameter \(\lambda \) for the periodic spline may be viewed as soft thresholding.

Now consider the general spline model (2.10). From (2.26), the hat matrix \(H(\lambda) = I - n\lambda Q_2 Q_2^T M Q_2 \). Let \(U E U^T \) be the eigendecomposition of \(Q_2^T \Sigma Q_2 \), where \(U \in \mathbb{R}^{(n-p) \times (n-p)} \) is an orthogonal matrix and \(E = \text{diag}(e_1, \ldots, e_{n-p}) \). The projection onto the space spanned by \(T \)

\[
P_T \triangleq T(T^T T)^{-1} T^T = Q_T R (R^T R)^{-1} R^T Q_T^T = Q_T Q_T^T.
\]

Then

\[
H(\lambda) = I - n\lambda Q_2 U (E + n\lambda I)^{-1} U^T Q_2^T
= Q_T Q_T^T + Q_2 Q_2^T - n\lambda Q_2 U (E + n\lambda I)^{-1} U^T Q_2^T
= P_T + Q_2 UVU^T Q_2^T,
\]

(3.6)
where $V = \text{diag}(e_1/(e_1 + n\lambda), \ldots, e_{n-p}/(e_{n-p} + n\lambda))$. The hat matrix is divided into two mutually orthogonal matrices: one is the projection onto the space spanned by T, and the other is responsible for shrinking part of the signal that is orthogonal to T. The smoothing parameter shrinks eigenvalues in the form $e_\nu/(e_\nu + n\lambda)$. The choices $\lambda = \infty$ and $\lambda = 0$ lead to the parametric model H_0 and interpolation, respectively.

Equation (3.7) also indicates that the hat matrix $H(\lambda)$ is nonnegative definite. However, unlike the projection matrix for a parametric model, $H(\lambda)$ is usually not idempotent. $H(\lambda)$ has p eigenvalues equal to one and the remaining eigenvalues less than one when $\lambda > 0$.

3.2 Trade-Offs

Before introducing methods for selecting the smoothing parameter, it is helpful to discuss some basic concepts and principles for model selection. In general, model selection boils down to compromises between different aspects of a model. Occam’s razor has been the guiding principle for the compromises: the model that fits observations sufficiently well in the least complex way should be preferred. To be precise on fits observations sufficiently well, one needs a quantity that measures how well a model fits the data. One such measure is the LS in (1.6). To be precise on the least complex way, one needs a quantity that measures the complexity of a
model. For a parametric model, a common measure of model complexity is the number of parameters in the model, often called the degrees of freedom (df). For example, the df of model \mathcal{M}_k in (3.1) equals $2k + 1$.

What would be a good measure of model complexity for a nonparametric regression procedure? Consider the general nonparametric regression model (2.10). Let $f_i = \mathcal{L}_i f$, and $f = (f_1, \ldots, f_n)$. Let \hat{f} be an estimate of f based on a modeling procedure \mathcal{M}, and $\hat{f}_i = \mathcal{L}_i \hat{f}$. Ye (1998) defined generalized degrees of freedom (gdf) of \mathcal{M} as

$$
\text{gdf}(\mathcal{M}) \triangleq n \sum_{i=1}^n \frac{\partial \mathcal{E}_f(\hat{f}_i)}{\partial f_i}.
$$

The gdf is an extension of the standard degrees of freedom for general modeling procedures. It can be viewed as the sum of the average sensitivities of the fitted values \hat{f}_i to a small change in the response. It is easy to check that (Efron 2004)

$$
\text{gdf}(\mathcal{M}) = \frac{1}{\sigma^2} \sum_{i=1}^n \text{Cov}(\hat{f}_i, y_i),
$$

where $\sum_{i=1}^n \text{Cov}(\hat{f}_i, y_i)$ is the so-called covariance penalty (Tibshirani and Knight 1999). For spline estimate with a fixed λ, we have $\hat{f} = H(\lambda) y$ based on (2.25). Denote the modeling procedure leading to \hat{f} as \mathcal{M}_λ and $H(\lambda) = \{h_{ij}\}_{i,j=1}^n$. Then

$$
\text{gdf}(\mathcal{M}_\lambda) = \sum_{i=1}^n \frac{\partial \mathcal{E}_f(\sum_{i=1}^n h_{ij} y_j)}{\partial f_i} = \sum_{i=1}^n \frac{\partial \sum_{j=1}^n h_{ij} f_j}{\partial f_i} = \text{tr} H(\lambda),
$$

where tr represents the trace of a matrix. Even though λ does not have a physical interpretation as k, tr$H(\lambda)$ is a useful measure of model complexity and will be simply referred to as the degrees of freedom.

For Stratford weather data, Figure 3.3(a) depicts how tr$H(\lambda)$ for the cubic periodic spline depends on the smoothing parameter λ. It is clear that the degrees of freedom decrease as λ increases.

To illustrate the interplay between the LS and model complexity, we fit trigonometric polynomial models from the smallest model with $k = 0$ to the largest model with $k = K$. The square root of residual sum of squares (RSS) are plotted against the degrees of freedom ($2k + 1$) as circles in Figure 3.3(b). Similarly, we fit the periodic spline with a wide range of values for the smoothing parameter λ. Again, we plot the square root of RSS against the degrees of freedom (tr$H(\lambda)$) as the solid line in Figure 3.3(b). Obviously, RSS decreases to zero (interpolation) as the degrees of freedom increase to n. The square root of RSS keeps
declining almost linearly after the initial big drop. It is quite clear that the constant model does not fit data well. However, it is unclear which model fits observations sufficiently well.

Figure 3.3(b) shows that the LS and model complexity are two opposite aspects of a model: the approximation error decreases as the model complexity increases. Our goal is to find the “best” model that strikes a balance between these two conflicting aspects. To make the term “best” meaningful, we need a target criterion that quantifies a model’s performance. It is clear that the LS cannot be used as the target because it will lead to the most complex model. Even though there is no universally accepted measure, some criteria are widely accepted and used in practice. We now introduce a criterion that is commonly used for regression models.

Consider the loss function

$$L(\lambda) = \frac{1}{n} ||\hat{f} - f||^2.$$

(3.9)

Define the risk function, also called mean squared error (MSE), as

$$\text{MSE}(\lambda) \triangleq \mathbb{E}L(\lambda) = \mathbb{E}\left(\frac{1}{n} ||\hat{f} - f||^2\right).$$

(3.10)

We want the estimate \hat{f} to be as close to the true function f as possible. Obviously, MSE is the expectation of the Euclidean distance between the estimates and the true values. It can be decomposed into two com-
Smothing Splines: Methods and Applications

\[\text{MSE}(\lambda) = \frac{1}{n} E \left\| (E\hat{f} - f) + (\hat{f} - E\hat{f}) \right\|^2 \]

\[= \frac{1}{n} E \left\| E\hat{f} - f \right\|^2 + \frac{2}{n} E(\hat{f} - E\hat{f})^T (\hat{f} - E\hat{f}) + \frac{1}{n} E \left\| \hat{f} - E\hat{f} \right\|^2 \]

\[= \frac{1}{n} \left\| E\hat{f} - f \right\|^2 + \frac{1}{n} E \left\| \hat{f} - E\hat{f} \right\|^2 \]

\[= \frac{1}{n} \left\| (I - H(\lambda)) f \right\|^2 + \sigma^2 \frac{1}{n} \text{tr} H^2(\lambda) \]

\[= b^2(\lambda) + v(\lambda), \quad (3.11) \]

where \(b^2 \) and \(v \) represent squared bias and variance, respectively. Note that bias depends on the true function, while the variance does not.

Based on notations introduced in Section 3.2, let \(h = (h_1, \ldots, h_{n-p})^T \triangleq U^T Q^T 2f \). From (3.6), we have

\[b^2(\lambda) = \frac{1}{n} \left\| (I - H(\lambda)) f \right\|^2 \]

\[= \frac{1}{n} f^T Q^2 U \text{diag} \left\{ \left(\frac{n\lambda}{e_1 + n\lambda} \right)^2, \ldots, \left(\frac{n\lambda}{e_{n-p} + n\lambda} \right)^2 \right\} U^T Q^T 2f \]

\[= \frac{1}{n} \sum_{\nu=1}^{n-p} \left(\frac{n\lambda h_\nu}{e_\nu + n\lambda} \right)^2 . \]

From (3.7), we have

\[v(\lambda) = \sigma^2 \frac{1}{n} \text{tr} H^2(\lambda) = \sigma^2 \frac{1}{n} \text{tr}(P_T + Q_2 UV^2 U^T Q_2^T) \]

\[= \sigma^2 \left\{ p + \sum_{\nu=1}^{n-p} \left(\frac{e_\nu}{e_\nu + n\lambda} \right)^2 \right\} . \]

The squared bias measures how well \(\hat{f} \) approximates the true function \(f \), and the variance measures how well the function can be estimated. As \(\lambda \) increases from 0 to \(\infty \), \(b^2(\lambda) \) increases from 0 to \(\sum_{\nu=1}^{n-p} h_\nu^2/n = \| Q_2^T f \|^2/n \), while \(v(\lambda) \) decreases from \(\sigma^2 \) to \(p\sigma^2/n \). Therefore, the MSE represents a trade-off between bias and variance. Note that \(Q_2^T f \) represents the signal that is orthogonal to \(T \).

It is easy to check that \(db^2(\lambda)/d\lambda|_{\lambda=0} = 0 \) and \(dv(\lambda)/d\lambda|_{\lambda=0} < 0 \). Thus, \(d\text{MSE}(\lambda)/d\lambda|_{\lambda=0} < 0 \), and \(\text{MSE}(\lambda) \) has at least one minimizer \(\lambda^* > 0 \). Therefore, when \(\text{MSE}(0) \leq \text{MSE}(\infty) \), there exists at least one \(\lambda^* \) such that the corresponding PLS estimate performs better in
terms of MSE than the LS estimate in \(H_0 \) and the interpolation. When \(\text{MSE}(0) > \text{MSE}(\infty) \), considering the \(\text{MSE} \) as a function of \(\delta = 1/\lambda \), we have \(d^2[\delta]/d\delta|_{\delta=0} < 0 \) and \(dv(\delta)/d\delta|_{\delta=0} = 0 \). Then, again, there exists at least one \(\delta^* \) such that the corresponding PLS estimate performs better in terms of \(\text{MSE} \) than the LS estimate in \(H_0 \) and the interpolation.

To calculate \(\text{MSE} \), one needs to know the true function \(f \). The following simulation illustrates the bias-variance trade-off. Observations are generated from model (1.1) with \(f(x) = \sin(4\pi x^2) \) and \(\sigma = 0.5 \). The same design points as in the Stratford weather data are used: \(x_i = i/n \) for \(i = 1, \ldots, n \) and \(n = 73 \). The true function and one realization of observations are shown in Figure 3.4(a). For a fixed \(\lambda \), the bias, variance, and \(\text{MSE} \) can be calculated since the true function is known in the simulation. For the cubic periodic spline, Figure 3.4(b) shows \(b^2(\lambda) \), \(v(\lambda) \), and \(\text{MSE}(\lambda) \) as functions of \(\log_{10}(n\lambda) \). Obviously, as \(\lambda \) increases, the squared bias increases and the variance decreases. The MSE represents a compromise between bias and variance.

![Figure 3.4](attachment:figure3.4.png)

FIGURE 3.4 Plots of (a) true function (line) and observations (circles), and (b) squared bias \(b^2(\lambda) \) (dashed), variance \(v(\lambda) \) (dotted line), and MSE (solid line) for the cubic periodic spline.

Another closely related target criterion is the average predictive squared error (PSE)

\[
\text{PSE}(\lambda) = \mathbb{E}\left(\frac{1}{n}\|y^+ - \hat{f}\|^2\right),
\]

where \(y^+ = f + \epsilon^+ \) are new observations of \(f \), \(\epsilon^+ = (\epsilon^+_1, \ldots, \epsilon^+_n)^T \) are independent of \(\epsilon \), and \(\epsilon^+_i \) are independent and identically distributed
with mean zero and variance σ^2. PSE measures the performance of a model’s prediction for new observations. We have

$$\text{PSE}(\lambda) = E\left(\frac{1}{n}|| (y^+ - f) + (f - \hat{f})||^2\right) = \sigma^2 + \text{MSE}(\lambda).$$

Thus PSE differs from MSE only by a constant σ^2.

Ideally, one would want to select λ that minimizes the MSE (PSE). This is, however, not practical because MSE (PSE) depends on the unknown true function f that one wants to estimate in the first place. Instead, one may estimate MSE (PSE) from the data and then minimize the estimated criterion. We discuss unbiased and cross-validation estimates of PSE (MSE) in Sections 3.3 and 3.4, respectively.

3.3 Unbiased Risk

First consider the case when the error variance σ^2 is known. Since

$$\mathbb{E}\left(\frac{1}{n}|| y - \hat{f} ||^2\right)
= \mathbb{E}\left(\frac{1}{n}|| y - f ||^2 + \frac{2}{n}(y - f)^T(f - \hat{f}) + \frac{1}{n}|| f - \hat{f} ||^2\right)
= \sigma^2 - \frac{2\sigma^2}{n}\text{tr}H(\lambda) + \text{MSE}(\lambda),$$

(3.13)

then,

$$\text{UBR}(\lambda) \triangleq \frac{1}{n}|| (I - H(\lambda))y ||^2 + \frac{2\sigma^2}{n}\text{tr}H(\lambda)$$

(3.14)

is an unbiased estimate of $\text{PSE}(\lambda)$. Since PSE differs from MSE only by a constant σ^2, one may expect the minimizer of UBR(λ) to be close to the minimizer of the risk function MSE(λ). In fact, a stronger result holds: under certain regularity conditions, UBR(λ) is a consistent estimate of the relative loss function $L(\lambda) + n^{-1}\epsilon^T\epsilon$ (Gu 2002). The function UBR(λ) is referred to as the unbiased risk (UBR) criterion, and the minimizer of UBR(λ) is referred to as the UBR estimate of λ. It is obvious that UBR(λ) is an extension of the Mallow’s C_p criterion.

The error variance σ^2 is usually unknown in practice. In general, there are two classes of estimators for σ^2: residual-based and difference-based estimators. The first class of estimators is based on residuals from an estimate of f. For example, analogous to parametric regression, an
estimator of σ^2 based on fit $\hat{f} = H(\lambda)y$, is

$$\hat{\sigma}^2 \triangleq \frac{|| (I - H(\lambda))y ||^2}{n - \text{tr}H(\lambda)}.$$

(3.15)

The estimator $\hat{\sigma}^2$ is consistent under certain regularity conditions (Gu 2002). However, it depends critically on the smoothing parameter λ. Thus, it cannot be used in the UBR criterion since the purpose of this criterion is to select λ. For choosing the amount of smoothing, it is desirable to have an estimator of σ^2 without needing to fit the function f first.

The difference-based estimators of σ^2 do not require an estimate of the mean function f. The basic idea is to remove the mean function f by taking differences based on some well-chosen subsets of data. Consider the general SSR model (2.10). Let $I_j = \{i(j, 1), \ldots, i(j, K_j)\} \subset \{1, \ldots, n\}$ be a subset of index and $d(j, k)$ be some fixed coefficients such that

$$\sum_{k=1}^{K_j} d(j, k) = 1,$$

$$\sum_{k=1}^{K_j} d(j, k) L_i(j, k) f \approx 0, \quad j = 1, \ldots, J.$$

Since

$$E \left\{ \sum_{k=1}^{K_j} d(j, k) y_{i(j, k)} \right\}^2 \approx E \left\{ \sum_{k=1}^{K_j} d(j, k) L_i(j, k) \right\}^2 = \sigma^2,$$

then

$$\hat{\sigma}^2 \approx \frac{1}{J} \sum_{j=1}^{J} \left\{ \sum_{k=1}^{K_j} d(j, k) y_{i(j, k)} \right\}^2$$

(3.16)

provides an approximately unbiased estimator of σ^2. The estimator $\hat{\sigma}^2$ is referred to as a differenced-based estimator since $d(j, k)$ are usually chosen to be contrasts such that $\sum_{k=1}^{K_j} d(j, k) = 0$. The specific choices of subsets and coefficients depend on factors including prior knowledge about f and the domain X.

Several methods have been proposed for the common situation when x is a univariate continuous variable, f is a smooth function, and L_i are evaluational functionals. Suppose design points are ordered such that $x_1 \leq x_2 \leq \cdots \leq x_n$. Since f is smooth, then $f(x_{j+1}) - f(x_j) \approx 0$ when neighboring design points are close to each other. Setting $I_j = \{j, j+1\}$ and $d(j, 1) = -d(j, 2) = \frac{1}{\sqrt{2}}$ for $j = 1, \ldots, n-1$, we have the first-order difference-based estimator proposed by Rice (1984):

$$\tilde{\sigma}_R^2 = \frac{1}{2(n-1)} \sum_{i=2}^{n} (y_i - y_{i-1})^2.$$

(3.17)
Hall, Kay and Titterington (1990) proposed the \(m \)th order difference-based estimator

\[
\tilde{\sigma}^2_{\text{HKT}} = \frac{1}{n-m} \sum_{j=1}^{n-m} \left\{ \sum_{k=1}^{m} \delta_k y_{j+k} \right\}^2,
\]

(3.18)

where coefficients \(\delta_k \) satisfy \(\sum_{k=1}^{m} \delta_k = 0 \), \(\sum_{k=1}^{m} \delta_k^2 = 1 \), and \(\delta_1 \delta_m \neq 0 \). Optimal choices of \(\delta_k \) are studied in Hall et al. (1990). It is easy to see that \(\tilde{\sigma}^2_{\text{HKT}} \) corresponds to \(I_j = \{ j, \ldots, j + m \} \) and \(d(j,k) = \delta_k \) for \(j = 1, \ldots, n-m \).

Both \(\tilde{\sigma}^2_R \) and \(\tilde{\sigma}^2_{\text{HKT}} \) require an ordering of design points that could be problematic for multivariate independent variables. Tong and Wang (2005) proposed a different method for a general domain \(\mathcal{X} \). Suppose \(\mathcal{X} \) is equipped with a norm. Collect squared distances, \(d_{ij} = ||x_i - x_j||^2 \), for all pairs \(\{x_i, x_j\} \), and half squared differences, \(s_{ij} = (y_i - y_j)^2/2 \), for all pairs \(\{y_i, y_j\} \). Then \(E(s_{ij}) = (f(x_i) - f(x_j))^2/2 + \sigma^2 \). Suppose \((f(x_i) - f(x_j))^2/2 \) can be approximated by \(\beta d_{ij} \) when \(d_{ij} \) is small. Then the LS estimate of the intercept in the simple linear model

\[
s_{ij} = \alpha + \beta d_{ij} + \epsilon_{ij}, \quad d_{ij} \leq D,
\]

(3.19)

provides an estimate of \(\sigma^2 \). Denote such an estimator as \(\tilde{\sigma}^2_{\text{TW}} \). Theoretical properties and the choice of bandwidth \(D \) were studied in Tong and Wang (2005).

To illustrate the UBR criterion as an estimate of PSE, we generate responses from model (1.1) with \(f(x) = \sin(4\pi x^2) \), \(\sigma = 0.5 \), \(x_i = i/n \) for \(i = 1, \ldots, n \), and \(n = 73 \). For the cubic periodic spline, the UBR functions based on 50 replications of simulation data are shown in Figure 3.5 where the true variance is used in (a) and the Rice estimator is used in (b).

3.4 Cross-Validation and Generalized Cross-Validation

Equation (3.13) shows that the RSS underestimates the PSE by the amount of \(2\sigma^2 \text{tr} H(\lambda)/n \). The second term in the UBR criterion corrects this bias. The bias in RSS is a consequence of using the same data for model fitting and model evaluation. Ideally, these two tasks should be separated using independent samples. This can be achieved by splitting the whole data into two subsamples: a training (calibration) sample for
model fitting, and a test (validation) sample for model evaluation. This approach, however, is not efficient unless the sample size is large. The idea behind cross-validation is to recycle data by switching the roles of training and test samples. For simplicity, we present leaving-out-one cross-validation only. That is, each time one observation will be left out as the test sample, and the remaining $n - 1$ samples will be used as the training sample.

Let $\hat{f}^{[i]}$ be the minimizer of the PLS based on all observations except y_i:

$$\frac{1}{n} \sum_{j \neq i} (y_j - L_j f)^2 + \lambda \|P f\|^2. \quad (3.20)$$

The cross-validation estimate of PSE is

$$CV(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(L_i \hat{f}^{[i]} - y_i \right)^2. \quad (3.21)$$

$CV(\lambda)$ is referred to as the cross-validation criterion, and the minimizer of $CV(\lambda)$ is called the cross-validation estimate of the smoothing parameter. Computation of $\hat{f}^{[i]}$ based on (3.21) for each $i = 1, \ldots, n$ would be costly. Fortunately, this is unnecessary due to the following lemma.
Leaving-out-one Lemma

For any fixed \(i\), \(\hat{f}^{[i]}\) is the minimizer of

\[
\frac{1}{n} \left(\mathcal{L}_i \hat{f}^{[i]} - \mathcal{L}_i f \right)^2 + \frac{1}{n} \sum_{j \neq i} (y_j - \mathcal{L}_j f)^2 + \lambda \| P_1 f \|^2.
\]

(3.22)

[Proof] For any function \(f\), we have

\[
\frac{1}{n} \left(\mathcal{L}_i \hat{f}^{[i]} - \mathcal{L}_i f \right)^2 + \frac{1}{n} \sum_{j \neq i} (y_j - \mathcal{L}_j f)^2 + \lambda \| P_1 f \|^2
\]

\[
\geq \frac{1}{n} \sum_{j \neq i} (y_j - \mathcal{L}_j f)^2 + \lambda \| P_1 f \|^2
\]

\[
\geq \frac{1}{n} \sum_{j \neq i} \left(y_j - \mathcal{L}_j \hat{f}^{[i]} \right)^2 + \lambda \| P_1 \hat{f}^{[i]} \|^2
\]

\[
= \frac{1}{n} \left(\mathcal{L}_i \hat{f}^{[i]} - \mathcal{L}_i \hat{f}^{[i]} \right)^2 + \frac{1}{n} \sum_{j \neq i} \left(y_j - \mathcal{L}_j \hat{f}^{[i]} \right)^2 + \lambda \| P_1 \hat{f}^{[i]} \|^2,
\]

where the second inequality holds since \(\hat{f}^{[i]}\) is the minimizer of (3.20).

The above lemma indicates that the solution to the PLS (3.20) without the \(i\)th observation, \(\hat{f}^{[i]}\), is also the solution to the PLS (2.11) with the \(i\)th observation \(y_i\) being replaced by the fitted value \(\mathcal{L}_i \hat{f}^{[i]}\). Note that the hat matrix \(H(\lambda)\) depends on the model space and operators \(\mathcal{L}_i\) only. It does not depend on observations of the dependent variable. Therefore, both fits based on (2.11) and (3.22) have the same hat matrix. That is, \(\hat{f} = H(\lambda)y\) and \(\hat{f}^{[i]} = H(\lambda)y^{[i]}\), where \(y^{[i]} = (\mathcal{L}_1 \hat{f}^{[i]}, \ldots, \mathcal{L}_n \hat{f}^{[i]})^T\) and \(y^{[i]}\) is the same as \(y\) except that the \(i\)th element is replaced by \(\mathcal{L}_i \hat{f}^{[i]}\). Denote \(H(\lambda) = \{h_{ij}\}_{i,j=1}^n\). Then

\[
\mathcal{L}_i \hat{f} = \sum_{j=1}^n h_{ij}y_j,
\]

\[
\mathcal{L}_i \hat{f}^{[i]} = \sum_{j \neq i} h_{ij}y_j + h_{ii} \mathcal{L}_i \hat{f}^{[i]}.
\]

Solving for \(\mathcal{L}_i \hat{f}^{[i]}\), we have

\[
\mathcal{L}_i \hat{f}^{[i]} = \mathcal{L}_i \hat{f} - h_{ii}y_i.
\]

Then

\[
\mathcal{L}_i \hat{f}^{[i]} - y_i = \frac{\mathcal{L}_i \hat{f} - h_{ii}y_i}{1 - h_{ii}} - y_i = \frac{\mathcal{L}_i \hat{f} - y_i}{1 - h_{ii}}.
\]
Plugging into (3.21), we have

\[
CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \frac{(L_i \hat{f} - y_i)^2}{(1-h_{ii})^2}.
\]
(3.23)

Therefore, the cross-validation criterion can be calculated using the fit based on the whole sample and the diagonal elements of the hat matrix.

Replacing \(h_{ii} \) by the average of diagonal elements, \(\text{tr}H(\lambda) \), we have the generalized cross-validation (GCV) criterion

\[
GCV(\lambda) \overset{\Delta}{=} 1 \frac{\sum_{i=1}^{n} ((L_i \hat{f} - y_i)^2)}{\left\{ \frac{1}{n} \text{tr}(I-H(\lambda)) \right\}^2}.
\]
(3.24)

The GCV estimate of \(\lambda \) is the minimizer of \(GCV(\lambda) \). Since \(\text{tr}H(\lambda)/n \) is usually small in the neighborhood of the optimal \(\lambda \), we have

\[
E\{GCV(\lambda)\} \approx \left\{ \frac{1}{n} ||(I-H(\lambda))f||^2 + \frac{\sigma^2}{n} \text{tr}H(\lambda)^2 + \sigma^2 - \frac{2\sigma^2}{n} \text{tr}H(\lambda) \right\} \left(1 + \frac{2}{n} \text{tr}H(\lambda) \right)
\]

\[
= \text{PSE}(\lambda)\{1 + o(1)\}.
\]

The above approximation provides a very crude argument supporting the GCV criterion as a proxy for the PSE. More formally, under certain regularity conditions, \(GCV(\lambda) \) is a consistent estimate of the relative loss function. Furthermore, \(GCV(\lambda) \) is invariant to an orthogonal transformation of \(y \). See Wahba (1990) and Gu (2002) for details. One distinctive advantage of the GCV criterion over the UBR criterion is that the former does not require an estimate of \(\sigma^2 \).

To illustrate the \(CV(\lambda) \) and \(GCV(\lambda) \) criteria as estimates of the PSE, we generate responses from model (1.1) with \(f(x) = \sin(4\pi x^2) \), \(\sigma = 0.5 \), \(x_i = i/n \) for \(i = 1, \ldots, n \), and \(n = 73 \). For cubic periodic spline, the CV and GCV scores for 50 replications of simulation data are shown in Figure 3.6.

3.5 Bayes and Linear Mixed-Effects Models

Assume a prior for \(f \) as

\[
F(x) = \sum_{\nu=1}^{p} \zeta_{\nu} \varphi_{\nu}(x) + \delta^* U(x),
\]
(3.25)
where $\zeta_1, \ldots, \zeta_p \overset{iid}{\sim} \mathcal{N}(0, \kappa)$, $U(x)$ is a zero-mean Gaussian stochastic process with covariance function $R_1(x, z)$, ζ_ν and $U(x)$ are independent, and κ and δ are positive constants. Note that the bounded linear functionals \mathcal{L}_i are defined for elements in \mathcal{H}. Its application to the random process $F(x)$ is yet to be defined. For simplicity, the subscript i in \mathcal{L}_i is ignored in the following definition. Define $\mathcal{L}(\zeta_\nu, \phi_\nu) = \zeta_\nu \mathcal{L} \phi_\nu$. The definition of $\mathcal{L}U$ requires the duality between the Hilbert space spanned by a family of random variables and its associated RKHS.

Consider the linear space

$$
\mathcal{U} = \{W : W = \sum \alpha_j U(x_j), \ x_j \in \mathcal{X}, \ \alpha_j \in \mathbb{R}\}
$$

with inner product $(W_1, W_2) = \mathbb{E}(W_1 W_2)$. Let $L_2(\mathcal{U})$ be the Hilbert space that is the completion of \mathcal{U}. Note that the RK R_1 of \mathcal{H}_1 coincides with the covariance function of $U(x)$. Consider a linear map $\Psi : \mathcal{H}_1 \rightarrow L_2(\mathcal{U})$ such that $\Psi \{R_1(x_j, \cdot)\} = U(x_j)$. Since

$$(R_1(x, \cdot), R_1(z, \cdot)) = R_1(x, z) = \mathbb{E}\{U(x)U(z)\} = (U(x), U(z)),$$

the map Ψ is inner product preserving. In fact, \mathcal{H}_1 is isometrically isomorphic to $L_2(\mathcal{U})$. See Parzen (1961) for details. Since \mathcal{L} is a bounded linear functional in \mathcal{H}_1, by the Riesz representation theorem, there exists a representer h such that $\mathcal{L}f = (h, f)$. Finally we define

$$\mathcal{L}U \doteq \Psi h.$$
Note that LU is a random variable in $L_2(U)$. The application of L to F is defined as $LF = \sum_{\nu=1}^p \zeta_\nu L\phi_\nu + \delta^2 LU$.

When L is an evaluational functional, say $Lf = f(x_0)$ for a fixed x_0, we have $h(\cdot) = R_1(x_0, \cdot)$. Consequently,

$$LU = \Psi h = \Psi \{R_1(x_0, \cdot)\} = U(x_0),$$

the evaluation of U at x_0. Therefore, as expected, $LF = F(x_0)$ when L is an evaluational functional.

Suppose observations are generated by

$$y_i = L_i F + \epsilon_i, \quad i = 1, \ldots, n,$$ \hspace{1cm} (3.26)

where the prior F is defined in (3.25) and $\epsilon_i \sim N(0, \sigma^2)$. Note that the normality assumption has been made for random errors.

We now compute the posterior mean $E(L_0 F | y)$ for a bounded linear functional L_0 on H. Note that L_0 is arbitrary, which could be quite different from L_i. For example, suppose $f \in W_2^m[a, b]$ and L_i are evaluational functionals. Setting $L_0 f = f'(x_0)$ leads to an estimate of f'. Using the correspondence between H and $L_2(U)$, we have

$$E(L_0 U L_j U) = (L_0 U, L_j U) = (L_i(x) R_1(x, \cdot), L_j(z) R_1(z, \cdot))$$

$$= L_i(x) L_j(z) R_1(x, z),$$

$$E(L_0 U L_0 U) = (L_0 U, L_0 U) = (L_0(x) R_1(x, \cdot), L_0(z) R_1(z, \cdot))$$

$$= L_0(x) L_0(z) R_1(x, z).$$

Let $\zeta = (\zeta_1, \ldots, \zeta_p)^T$, $\phi = (\phi_1, \ldots, \phi_p)^T$ and $L_0 \phi = (L_0 \phi_1, \ldots, L_0 \phi_p)^T$. Then $f'(x) = \phi^T(x) \zeta + \delta^2 U(x)$. It is easy to check that

$$y = T \zeta + \delta^2 (L_1 U, \ldots, L_n U)^T + \epsilon \sim N(0, \kappa T^T T + \delta \Sigma + \sigma^2 I),$$ \hspace{1cm} (3.27)

and

$$L_0 F = (L_0 \phi)^T \zeta + \delta^2 L_0 U$$

$$\sim N(0, \kappa (L_0 \phi)^T L_0 \phi + \delta L_0(x) L_0(z) R_1(x, z)).$$ \hspace{1cm} (3.28)

Furthermore,

$$E\{L_0 F | y\} = \kappa T L_0 \phi + \delta L_0 \xi,$$ \hspace{1cm} (3.29)

where

$$\xi(x) = (L_1(z) R_1(x, z), \ldots, L_n(z) R_1(x, z))^T,$$

$$L_0 \xi = (L_0(x) L_1(z) R_1(x, z), \ldots, L_0(x) L_n(z) R_1(x, z))^T.$$ \hspace{1cm} (3.30)
Let $\lambda = \sigma^2/n\delta$ and $\eta = \kappa/\delta$. Using properties of multivariate normal random variables and equations (3.27), (3.28), and (3.29), we have

$$
E(L_0 F | y) = (L_0 \phi)^T \eta T (\eta TT + M)^{-1} y + (L_0 \xi)^T (\eta TT + M)^{-1} y.
$$

(3.31)

It can be shown (Wahba 1990, Gu 2002) that for any full-column rank matrix T and symmetric and nonsingular matrix M,

$$
\lim_{\eta \to \infty} (\eta T^T + M)^{-1} = M^{-1} - M^{-1} T (T^T M^{-1})^{-1} T^T M^{-1},
$$

(3.32)

Combining results in (3.31), (3.32), and (2.22), we have

$$
\lim_{\kappa \to \infty} E(L_0 F | y) = (L_0 \phi)^T T (T^T M^{-1})^{-1} T^T M^{-1} y + (L_0 \xi)^T (T^T M^{-1} T^T M^{-1} - 1) y
$$

$$
= (L_0 \phi)^T d + (L_0 \xi)^T c
$$

$$
= L_0 \hat{f}.
$$

The above result indicates that the smoothing spline estimate \hat{f} is a Bayes estimator with a diffuse prior for ζ. From a frequentist perspective, the smoothing spline estimate may be regarded as the best linear unbiased prediction (BLUP) estimate of a linear mixed-effects (LME) model. We now present three corresponding LME models. The first LME model assumes that

$$
y = T \zeta + u + \epsilon,
$$

(3.33)

where $\zeta = (\zeta_1, \ldots, \zeta_p)^T$ are deterministic parameters, $u = (u_1, \ldots, u_n)^T$ are random effects with distribution $u \sim N(0, \sigma^2 \Sigma/n\lambda)$, $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T$ are random errors with distribution $\epsilon \sim N(0, \sigma^2 I)$, and u and ϵ are independent. The second LME model assumes that

$$
y = T \zeta + \Sigma u + \epsilon,
$$

(3.34)

where ζ are deterministic parameters, u are random effects with distribution $u \sim N(0, \sigma^2 \Sigma^+ n\lambda)$, Σ^+ is the Moore–Penrose inverse of Σ, ϵ are random errors with distribution $\epsilon \sim N(0, \sigma^2 I)$, and u and ϵ are independent.

It is inconvenient to use the above two LME models for computation since Σ may be singular. Write $\Sigma = ZZ^T$, where Z is a $n \times m$ matrix with $m = \text{rank}(\Sigma)$. The third LME model assumes that

$$
y = T \zeta + Z u + \epsilon,
$$

(3.35)
where ζ are deterministic parameters, u are random effects with distribution $u \sim N(0, \sigma^2 I/n\lambda)$, e are random errors with distribution $e \sim N(0, \sigma^2 I)$, and u and e are independent.

It can be shown that the BLUP estimates for each of the three LME models (3.33), (3.34), and (3.35) are the same as the smoothing spline estimate. See Wang (1998b) and Chapter 9 for more details.

3.6 Generalized Maximum Likelihood

The connection between smoothing spline models and Bayes models can be exploited to develop a likelihood-based estimate for the smoothing parameter. From (3.27), the marginal distribution of y is $N(0, \delta(T^T \eta T T^T + M))$. Consider the following transformation

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} Q_T \\ \frac{1}{\sqrt{\eta}}T^T \end{pmatrix} y.$$ \hspace{1cm} (3.36)

It is easy to check that

$$w_1 = Q_T^T y \sim N(0, \delta Q_T^T M Q_2),$$

$$\text{Cov}(w_1, w_2) = \frac{\delta}{\sqrt{\eta}} Q_2^T (\eta TT^T + M) T \rightarrow 0, \eta \rightarrow \infty,$$

$$\text{Var}(w_2) = \frac{\delta}{\eta} T^T (\eta TT^T + M) T \rightarrow \delta (T^T T) (T^T T), \eta \rightarrow \infty.$$

Note that the distribution of w_2 is independent of λ. Therefore, we consider the negative marginal log-likelihood of w_1

$$l(\lambda, \delta|w_1) = \frac{1}{2} \log |\delta Q_T^T M Q_2| + \frac{1}{2\delta} w_1^T (Q_T^T M Q_2)^{-1}w_1 + C_1,$$ \hspace{1cm} (3.37)

where C_1 is a constant. Minimizing $l(\lambda, \delta|w_1)$ with respect to δ, we have

$$\hat{\delta} = \frac{w_1^T (Q_T^T M Q_2)^{-1} w_1}{n - p}.$$ \hspace{1cm} (3.38)

The profile negative log-likelihood

$$l_p(\lambda, \hat{\delta}|w_1) = \frac{1}{2} \log |Q_2^T M Q_2| + \frac{n - p}{2} \log \hat{\delta} + C_2$$

$$= \frac{n - p}{2} \log \frac{w_1^T (Q_T^T M Q_2)^{-1} w_1}{(\text{det}(Q_T^T M Q_2)^{-1}) \hat{\delta}} + C_2.$$ \hspace{1cm} (3.39)
where C_2 is another constant. The foregoing profile negative log-likelihood is equivalent to

$$GML(\lambda) \triangleq \frac{w_1^T (Q_2^T MQ_2)^{-1} w_1}{\{\det(Q_2^T MQ_2)^{-1}\}^{\frac{1}{n-p}}} = \frac{y^T (I - H(\lambda)) y}{[\det^+ \{(I - H(\lambda))\}]^{\frac{1}{n-p}}}. \tag{3.40}$$

where the second equality is based on (2.26), and \det^+ represents the product of the nonzero eigenvalues. The function $GML(\lambda)$ is referred to as the generalized maximum likelihood (GML) criterion, and the minimizer of $GML(\lambda)$ is called the GML estimate of the smoothing parameter.

From (3.38), a likelihood-based estimate of σ^2 is

$$\hat{\sigma}^2 \triangleq \frac{n\hat{\lambda} w_1^T (Q_2^T MQ_2)^{-1} w_1}{n - p} = \frac{y^T (I - H(\lambda)) y}{n - p}. \tag{3.41}$$

The GML criterion may also be derived from the connection between smoothing spline models and LME models. Consider any one of the three corresponding LME models (3.33), (3.34), and (3.35). The smoothing parameter λ is part of the variance component for the random effects. It is common practice in the mixed-effects literature to estimate the variance components using restricted likelihood based on an orthogonal contrast of original observations where the orthogonal contrast is used to eliminate the fixed effects. Note that w_1 is one such orthogonal contrast since Q_2 is orthogonal to T. Therefore, $l(\lambda, \delta|w_1)$ in (3.37) is the negative log restricted likelihood, and the GML estimate of the smoothing parameter is the restricted maximum likelihood (REML) estimate. Furthermore, the estimate of error variance in (3.41) is the REML estimate of σ^2. The connection between a smoothing spline estimate with GML estimate of the smoothing parameter and a BLUP estimate with REML estimate of the variance component in a corresponding LME model may be utilized to fit a smoothing spline model using software for LME models. This approach will be adopted in Chapters 5, 8, and 9 to fit smoothing spline models for correlated observations.

3.7 Comparison and Implementation

Theoretical properties of the UBR, GCV, and GML criteria can be found in Wahba (1990) and Gu (2002). The UBR criterion requires an estimate of the variance σ^2. No distributional assumptions are required for the UBR and GCV criteria, while the normality assumption is required in
the derivation of the GML criterion. Nevertheless, limited simulations suggest that the GML method is quite robust to the departure from the normality assumption.

Theoretical comparisons between UBR, GCV, and GML criteria have been studied using large-sample asymptotics (Wahba 1985, Li 1986, Stein 1990) and finite sample arguments (Efron 2001). Conclusions based on different perspectives do not always agree with each other. In practice, all three criteria usually perform well and lead to similar estimates. Each method has its own strengths and weaknesses. The UBR and GCV criteria occasionally lead to gross undersmooth (interpolation) when sample size is small. Fortunately, this problem diminishes quickly when sample size increases (Wahba and Wang 1995).

The argument `spar` in the `ssr` function specifies which method should be used for selecting the smoothing parameter λ. The options `spar='v'`, `spar='m'`, and `spar='u'` correspond to the GCV, GML, and UBR methods, respectively. The default choice is the GCV method.

We now use the motorcycle data to illustrate how to specify the `spar` option. For simplicity, the variable `times` is first scaled into $[0, 1]$. We first use the Rice method to estimate error variance and use the estimated variance in the UBR criterion:

```r
> x <- (times-min(times))/(max(times)-min(times))
> vrice <- mean((diff(accel))^2)/2
> mcycle.ubr.1 <- ssr(accel~x, rk=cubic(x),
                     spar='''u''', varht=vrice)
> summary(mcycle.ubr.1)
Smoothing spline regression fit by UBR method
...

UBR estimate(s) of smoothing parameter(s) : 8.60384e-07
Equivalent Degrees of Freedom (DF):  12.1624
Estimate of sigma:  23.09297
```

The option `varht` specifies the parameter σ^2 required for the UBR method. The `summary` function provides a synopsis including the estimate of the smoothing parameter, the degrees of freedom $trH(\lambda)$, and the estimate of standard deviation $\hat{\sigma}$.

Instead of the Rice estimator, we can estimate the error variance using Tong and Wang's estimator $\tilde{\sigma}^2_W$. Note that there are multiple observations at some time points. We use these replicates to estimate the error variance. That is, we select all pairs with zero distances:

```r
> d <- s <- NULL
> for (i in 1:132) {
```

for (j in (i+1):133) {
 d <- c(d, (x[i]-x[j])**2)
 s <- c(s, (accel[i]-accel[j])**2/2)
}

> vtw <- coef(lm(s~d, subset=d==0))[1]
> mcycle.ubr.2 <- ssr(accel~x, rk=cubic(x),
 spar='u', varht=vtw)
> summary(mcycle.ubr.2)
Smoothing spline regression fit by UBR method
...

UBR estimate(s) of smoothing parameter(s) : 8.35209e-07
Equivalent Degrees of Freedom (DF): 12.24413
Estimate of sigma: 22.69913

Next we use the GCV method to select the smoothing parameter:

> mcycle.gcv <- ssr(accel~x, rk=cubic(x), spar='v')
> summary(mcycle.gcv)
Smoothing spline regression fit by GCV method
...

GCV estimate(s) of smoothing parameter(s) : 8.325815e-07
Equivalent Degrees of Freedom (DF): 12.25284
Estimate of sigma: 22.65806

Finally, we use the GML method to select the smoothing parameter:

> mcycle.gml <- ssr(accel~x, rk=cubic(x), spar='m')
> summary(mcycle.gml)
Smoothing spline regression fit by GML method
...

GML estimate(s) of smoothing parameter(s) : 4.729876e-07
Equivalent Degrees of Freedom (DF): 13.92711
Estimate of sigma: 22.57701

For the motorcycle data, all three methods lead to similar estimates of the smoothing parameter and the function f.

...
3.8 Confidence Intervals

3.8.1 Bayesian Confidence Intervals

Consider the Bayes model (3.25) and (3.26). The computation in Section 3.5 can be carried out one step further to derive posterior distributions. In the following arguments, as in Section 3.5, a diffuse prior is assumed for ζ with $\kappa \to \infty$. For simplicity of notation, the limit is not expressed explicitly.

Let $F_{1\nu} = \zeta \phi_\nu$ for $\nu = 1, \ldots, p$, and $F_1 = \delta^T U$. Let L_0, L_{01}, and L_{02} be bounded linear functionals. Since $F_{1\nu}$, F_1, and ϵ_i are all normal random variables, then the posterior distributions of $L_0 F_{1\nu}$ and $L_0 F_1$ are normal with the following mean and covariances.

Posterior means and covariances

For ν, $\mu = 1, \ldots, p$, the posterior means are

$$E(L_0 F_{1\nu}|y) = (L_0 \phi_\nu) e^{T_\nu} d_\nu,$$

$$E(L_0 F_1|y) = (L_0 \xi)^T c,$$ \hspace{1cm} (3.42)

and the posterior covariances are

$$\delta^{-1} \text{Cov}(L_0 F_{1\nu}, L_{02} F_1|y) = (L_{01} \phi_\nu) (L_{02} \phi_\mu) e^{T_\nu} A e^{T_\mu},$$

$$\delta^{-1} \text{Cov}(L_{01} F_{1\nu}, L_{02} F_1|y) = -(L_{01} \phi_\nu) e_{\nu}^T B (L_{02} \xi),$$

$$\delta^{-1} \text{Cov}(L_{01} F_1, L_{02} F_1|y) = L_{01} L_{02} R_1 - (L_{01} \xi)^T C (L_{02} \xi),$$ \hspace{1cm} (3.43)

where e_{ν} is a vector of dimension p with the νth element being one and all other elements being zero, the vectors c and d are given in (2.22), and the matrices $A = (T^T M^{-1} T)^{-1}$, $B = A T^T M^{-1}$, and $C = M^{-1} (I - B)$.

The vectors ξ and $L \xi$ are defined in (3.30). Proofs can be found in Wahba (1990) and Gu (2002). Note that $H = \text{span}\{\phi_1, \ldots, \phi_p\} \oplus H_1$. Then any $f \in H$ can be represented as

$$f = f_{01} + \cdots + f_{0p} + f_1,$$ \hspace{1cm} (3.44)

where $f_{0\nu} \in \text{span}\{\phi_\nu\}$ for $\nu = 1, \ldots, p$, and $f_1 \in H_1$. The estimate \hat{f} can also be decomposed similarly

$$\hat{f} = \hat{f}_{01} + \cdots + \hat{f}_{0p} + \hat{f}_1,$$ \hspace{1cm} (3.45)

where $\hat{f}_{0\nu} = \phi_\nu d_\nu$ for $\nu = 1, \ldots, p$, and $\hat{f}_1 = \hat{\xi}^T c$.
The functionals L_0, L_{01}, and L_{02} are arbitrary as long as they are well defined. Equations in (3.42) indicate that the posterior means of components in F equal their corresponding components in the spline estimate \hat{f}. Equations (3.42) and (3.43) can be used to compute posterior means and variances for any combinations of components of F. Specifically, consider the linear combination

$$F_\gamma(x) = \sum_{\nu=1}^{p} \gamma_\nu F_{0\nu}(x) + \gamma_{p+1} F_1(x),$$

where γ_ν equals 1 when the corresponding component in F is to be included and 0 otherwise, and $\gamma = (\gamma_1, \ldots, \gamma_{p+1})^T$. Then, for any linear functional L_0,

$$E(L_0 F_\gamma | y) = \sum_{\nu=1}^{p} \gamma_\nu (L_0 F_{0\nu}) + \gamma_{p+1} (L_0 F_1) \mathbf{c},$$

$$\text{Var}(L_0 F_\gamma | y) = \sum_{\nu=1}^{p} \sum_{\mu=1}^{p} \gamma_\nu \gamma_\mu \text{Cov}(L_0 F_{0\nu}, L_0 F_{0\mu}) + \sum_{\nu=1}^{p} \gamma_\nu \gamma_{p+1} \text{Cov}(L_0 F_{0\nu}, L_0 F_1) + \gamma_{p+1} \text{Cov}(L_0 F_1, L_0 F_1).$$

For various reasons it is often desirable to have interpretable confidence intervals for the function f and its components. For example, one may want to decide whether a nonparametric model is more suitable than a particular parametric model. A parametric regression model may be considered not suitable if a larger portion of its estimate is outside the confidence intervals of a smoothing spline estimate.

Consider a collection of points $x_{0j} \in X$, $j = 1, \ldots, J$. For each j, posterior mean $E(F_\gamma(x_{0j}) | y)$ and variance $\text{Var}(F_\gamma(x_{0j}) | y)$ can be calculated using equations in (3.47) by setting $L_0 F = F(x_{0j})$. Then, 100(1 - α)% Bayesian confidence intervals for

$$f_\gamma(x_{0j}) = \sum_{\nu=1}^{p} \gamma_\nu f_{0\nu}(x_{0j}) + \gamma_{p+1} f_1(x_{0j}), \quad j = 1, \ldots, J$$

are

$$E(F_\gamma(x_{0j}) | y) \pm z_{\frac{\alpha}{2}} \sqrt{\text{Var}(F_\gamma(x_{0j}) | y)}, \quad j = 1, \ldots, J,$$
In particular, let \(F = (\mathcal{L}_1 F, \ldots, \mathcal{L}_n F)^T \). Applying (3.42) and (3.43), we have

\[
\begin{align*}
\text{E}(F|y) &= H(\lambda)y, \\
\text{Cov}(F|y) &= \sigma^2 H(\lambda).
\end{align*}
\]

Therefore, the posterior variances of the fitted values \(\text{Var}(\mathcal{L}_i F|y) = \sigma^2 h_{ii} \), where \(h_{ii} \) are diagonal elements of the matrix \(H(\lambda) \). When \(\mathcal{L}_i \) are evaluational functionals \(\mathcal{L}_i f = f(x_i) \), Wahba (1983) proposed the following \(100(1-\alpha)\% \) confidence intervals

\[
\hat{f}(x_i) \pm z_{\alpha/2} \hat{\sigma} \sqrt{h_{ii}},
\]

(3.51) where \(\hat{\sigma} \) is an estimate of \(\sigma \). Note that confidence intervals for a linear combination of components of \(f \) can be constructed similarly.

Though based on the Bayesian argument, it has been found that the Bayesian confidence intervals have good frequentist properties provided that the smoothing parameter has been estimated properly. They must be interpreted as “across-the-function” rather than pointwise. More precisely, define the average coverage probability (ACP) as

\[
\text{ACP} = \frac{1}{n} \sum_{i=1}^{n} P\{f(x_i) \in C(\alpha, x_i)\}
\]

for some \((1-\alpha)100\% \) confidence intervals \(\{C(\alpha, x_i), i = 1, \ldots, n\} \).

Rather than considering a confidence interval for \(f(\tau) \), where \(f(\cdot) \) is the realization of a stochastic process and \(\tau \) is fixed, one may consider confidence intervals for \(f(\tau_n) \), where \(f \) is now a fixed function and \(\tau_n \) is a point randomly selected from \(\{x_i, i = 1, \ldots, n\} \). Then ACP = \(P\{f(\tau_n) \in C(\alpha, \tau_n)\} \). Note that the ACP coverage property is weaker than the pointwise coverage property. For polynomial splines and \(C(\alpha, x_i) \) being the Bayesian confidence intervals defined in (3.51), under certain regularity conditions, Nychka (1988) showed that ACP \(\approx 1-\alpha \).

The predict function in the assist package computes the posterior mean and standard deviation of \(F_\gamma(x) \) in (3.46). The option terms specifies the coefficients \(\gamma \), and the option newdata specifies a data frame consisting of the values at which predictions are required. We now use the geyser, motorcycle, and Arosa data to illustrate how to use the predict function to compute the posterior means and standard deviations.

For the geyser data, we have fitted a cubic spline in Chapter 1, Section 1.1 and a partial spline in Chapter 2, Section 2.10. In the following we fit a cubic spline using the ssr function, compute posterior means and standard deviations for the estimate of the smooth component \(P_1 f \) using the predict function, and plot the estimate of the smooth components and 95% Bayesian confidence intervals:
> geyser.cub.fit <- ssr(waiting~x, rk=cubic(x))
> grid <- seq(0,1,len=200)
> geyser.cub.pred <- predict(geyser.cub.fit, pstd=T,
 terms=c(0,0,1), newdata=data.frame(x=grid))
> grid1 <- grid*diff(range(eruptions))+min(eruptions)
> plot(eruptions, waiting, xlab='duration (mins)',
 ylim=c(-6,6), ylab='smooth component (mins)',
 type='n')
> polygon(c(grid1,rev(grid1)),
 c(geyser.cub.pred$fit-1.96*geyser.cub.pred$pstd,
 rev(geyser.cub.pred$fit+1.96*geyser.cub.pred$pstd)),
 col=gray(0:8/8)[8], border=NA)
> lines(grid1, geyser.cub.pred$fit)
> abline(0,0,lty=2)

where the option pstd specifies whether the posterior standard deviations should be calculated. Note that the option pstd=T can be dropped in the above statement since it is the default. There are in total three components in the cubic spline fit: two basis functions ϕ_1 (constant) and ϕ_2 (linear) for the null space, and the smooth component in the space \mathcal{H}_1. In the order in which they appear in the ssr function, these three components correspond to the intercept (~1, which is automatically included), the linear basis specified by ~x, and the smooth component specified by rk=cubic(x). Therefore, the option terms=c(0,0,1) was used to compute the posterior means and standard deviations for the smooth component f_1 in the space \mathcal{H}_1. The estimate of the smooth components and 95% Bayesian confidence intervals are shown in Figure 3.7(a). A large portion of the zero constant line is outside the confidence intervals, indicating the lack-of-fit of a linear model (the null space of the cubic spline).

For the partial spline model (2.43), consider the following Bayes model

$$y_i = s_i^T \beta + L_i F + \epsilon_i, \quad i = 1, \ldots, n,$$

(3.52)

where the prior for β is assumed to be $N(0, \kappa I_q)$, the prior F is defined in (3.25), and $\epsilon_i \sim I N(0, \sigma^2)$. Again, it can be shown that the PLS estimates of components in β and f based on (2.44) equal the posterior means of their corresponding components in the Bayes model as $\kappa \to \infty$. Posterior covariances and Bayesian confidence intervals for β and f_{γ} can be calculated similarly.

We now refit the partial spline model (2.47) and compute posterior means and standard deviations for the estimate of the smooth component $P_1 f$:
1.5 2.5 3.5 4.5
−6 −4 −2 0 2 4 6
duration (min)
smooth component (min)
(a)

1.5 2.5 3.5 4.5
−0.04 0.00 0.04
duration (min)
smooth component (min)
(b)

FIGURE 3.7 Geyser data, plots of estimates of the smooth components, and 95% Bayesian confidence intervals for (a) the cubic spline and (b) the partial spline models. The constant zero is marked as the dotted line in each plot.

> t <- .397; s <- 1*(x>t)
> geyser.ps.fit <- ssr(waiting~x+s, rk=cubic(x))
> geyser.ps.pred <- predict(geyser.ps.fit,
 terms=c(0,0,0,1),
 newdata=data.frame(x=grid,s=1*(grid>t)))

Since there are in total four components in the partial spline fit, the option terms=c(0,0,0,1) was used to compute the posterior means and standard deviations for the smooth component \(f_1 \).

Figure 3.7(b) shows the estimate of the smooth components and 95% Bayesian confidence intervals for the partial spline. The zero constant line is well inside the confidence intervals, indicating that this smooth component may be dropped in the partial spline model. That is, a simple linear change-point model may be appropriate for this data.

For the motorcycle data, based on visual inspection, we have searched a potential change-point \(t \) to the first derivative in the interval \([0.2, 0.25]\) for the variable \(x \) in Section 2.10. To search for all possible change-points to the first derivative, we fit the partial spline model (2.48) repeatedly with \(t \) taking values on a grid point in the interval \([0.1, 0.9]\). We then calculate the posterior mean and standard deviation for \(\beta \). Define a \(t \)-statistic at point \(t \) as \(\frac{E(\beta|y)}{\sqrt{\text{Var}(\beta|y)}} \). The \(t \)-statistics were calculated as follows:

> tgrid <- seq(0.05,.95,len=200); tstat <- NULL
> for (t in tgrid) {
 s <- (x-t)*(x>t)
 > geiyser.ps.fit <- ssr(waiting~x+s, rk=cubic(x))
 > geyser.ps.pred <- predict(geyser.ps.fit,
 terms=c(0,0,0,1),
 newdata=data.frame(x=grid,s=1*(grid>t)))

Since there are in total four components in the partial spline fit, the option terms=c(0,0,0,1) was used to compute the posterior means and standard deviations for the smooth component \(f_1 \).

Figure 3.7(b) shows the estimate of the smooth components and 95% Bayesian confidence intervals for the partial spline. The zero constant line is well inside the confidence intervals, indicating that this smooth component may be dropped in the partial spline model. That is, a simple linear change-point model may be appropriate for this data.

For the motorcycle data, based on visual inspection, we have searched a potential change-point \(t \) to the first derivative in the interval \([0.2, 0.25]\) for the variable \(x \) in Section 2.10. To search for all possible change-points to the first derivative, we fit the partial spline model (2.48) repeatedly with \(t \) taking values on a grid point in the interval \([0.1, 0.9]\). We then calculate the posterior mean and standard deviation for \(\beta \). Define a \(t \)-statistic at point \(t \) as \(\frac{E(\beta|y)}{\sqrt{\text{Var}(\beta|y)}} \). The \(t \)-statistics were calculated as follows:

> tgrid <- seq(0.05,.95,len=200); tstat <- NULL
> for (t in tgrid) {
 s <- (x-t)*(x>t)
tmp <- ssr(accel~x+s, rk=cubic(x))
tmppred <- predict(tmp, terms=c(0,0,1,0),
newdata=data.frame(x=.5,s=1))
tstat <- c(tstat, tmppred$fit/tmppred$pstd)
}

Note that term=c(0,0,1,0) requests the posterior mean and standard deviation for the component $\beta \times s$, where $s = (x - t)_+$, and s is set to one in the newdata argument. The t-statistics are shown in the bottom panel of Figure 3.8.

![Figure 3.8](image)

FIGURE 3.8 Motorcycle data, plots of t-statistics (bottom), and the partial spline fit with 95% Bayesian confidence intervals (top).

There are three clusters of large t-statistics that suggests three potential change points in the first derivative at $t_1 = 0.2128$, $t_2 = 0.3666$, and $t_3 = 0.5113$, respectively (see also Speckman (1995)). So we fit the
following partial spline model

\[y_i = \sum_{j=1}^{3} \beta_j (x_i - t_j)_+ + f(x_i) + \epsilon_i, \quad i = 1, \ldots, n, \]

(3.53)

where \(x \) is the variable times scaled into \([0, 1] \), \(t_j \) are the change-points in the first derivative, and \(f \in W_2^2[0, 1] \). We fit model (3.53) and compute posterior means and standard deviations as follows:

```r
> t1 <- .2128; t2 <- .3666; t3 <- .5113
> s1 <- (x-t1)*(x>t1); s2 <- (x-t2)*(x>t2)
> s3 <- (x-t3)*(x>t3)
> mcycle.ps.fit2 <- ssr(accel~x+s1+s2+s3, rk=cubic(x))
> grid <- seq(0,1,len=100)
> mcycle.ps.pred2 <- predict(mcycle.ps.fit2,
newdata=data.frame(x=grid, s1=(grid-t1)*(grid>t1),
s2=(grid-t2)*(grid>t2), s3=(grid-t3)*(grid>t3)))
```

The fit and Bayesian confidence intervals are shown in Figure 3.8.

For the Arosa data, Figure 2.12 in Chapter 2 shows the estimates and 95% confidence intervals for the overall function and its decomposition. In particular, the posterior means and standard deviations for the periodic spline were calculated as follows:

```r
> arosa.per.fit <- ssr(thick~1, rk=periodic(x))
> grid <- data.frame(x=seq(.5/12,11.5/12,length=50))
> arosa.per.pred <- predict(arosa.per.fit,grid,
terms=matrix(c(1,0,0,1,1,1),nrow=3,byrow=T))
```

where the input for the `term` argument is a 3 \(\times \) 2 matrix with the first row \((1,0)\) specifying the parametric component, the second row \((0,1)\) specifying the smooth component, and the third row \((1,1)\) specifying the overall function.

3.8.2 Bootstrap Confidence Intervals

Consider the general SSR model (2.10). Let \(\hat{f} \) and \(\hat{\sigma}^2 \) be the estimates of \(f \) and \(\sigma^2 \), respectively. Let

\[y^*_{i,b} = \mathcal{L}_i \hat{f} + \epsilon^*_{i,b}, \quad i = 1, \ldots, n; \quad b = 1, \ldots, B \]

(3.54)

be \(B \) bootstrap samples where \(\epsilon^*_{i,b} \overset{iid}{\sim} \text{N}(0,\hat{\sigma}^2) \). The random errors \(\epsilon^*_{i,b} \) may also be drawn from residuals with replacement when the normality assumption is undesirable. Let \(\hat{f}_{\gamma}^* \) be the estimate of \(f_\gamma \) in (3.48) based
on the bth bootstrap sample $\{y^*_i,b, \ i = 1, \ldots, n\}$. For any well-defined functional L_0, there are B bootstrap estimates $L_0\hat{f}_\gamma^*,b$ for $b = 1, \ldots, B$. Then the $100(1-\alpha)$\% percentile bootstrap confidence interval of $L_0\hat{f}_\gamma$ is
\[
(L_0\hat{f}_\gamma^*,L_0\hat{f}_\gamma^*),
\]
where $L_0\hat{f}_\gamma^*$ and $L_0\hat{f}_\gamma^*$ are the lower and upper $\alpha/2$ quantiles of $\{L_0\hat{f}_\gamma^*,b, \ b = 1, \ldots, B\}$.

The percentile-t bootstrap confidence intervals can be constructed as follows. Let $\tau = (L_0\hat{f}_\gamma - L_0\hat{f}_\gamma)/\hat{\sigma}$, where division by $\hat{\sigma}$ is introduced to reduce the dependence on σ. Let $\tau^*_b = (L_0\hat{f}_\gamma^*,b - L_0\hat{f}_\gamma)/\hat{\sigma}^*_b$ be the bootstrap estimates of τ for $b = 1, \ldots, B$, where $\hat{\sigma}^*_b$ is the estimate of σ based on the bth bootstrap sample. Then the $100(1-\alpha)$\% percentile-t bootstrap confidence interval of $L_0\hat{f}_\gamma$ is
\[
(L_0\hat{f}_\gamma - q_{1-\frac{\alpha}{2}}\hat{\sigma}, L_0\hat{f}_\gamma - q_{\frac{\alpha}{2}}\hat{\sigma}),
\]
where $q_{1-\frac{\alpha}{2}}$ and $q_{\frac{\alpha}{2}}$ are the lower and upper $\alpha/2$ quantiles of $\{\tau^*_b, \ b = 1, \ldots, B\}$. Note that the bounded linear condition is not required for L_0 in the above construction of bootstrap confidence intervals. Other forms of bootstrap confidence intervals and comparison between Bayesian and bootstrap approaches can be found in Wang and Wahba (1995).

For example, the 95\% percentile bootstrap confidence intervals in Figure 2.8 in Chapter 2 were computed as follows:

```r
> nboot <- 9999
> fb <- NULL
> for (i in 1:nboot) {
>   yb <- canada.fit1$fit +
>       sample(canada.fit1$resi, 35, replace=T)
>   bfit <- ssr(yb~s, rk=Sigma, spar='m')
>   fb <- cbind(fb, bfit$coef$d[2]+S%*%bfit$coef$c)
> }
> lb <- apply(fb, 1, quantile, prob=.025)
> ub <- apply(fb, 1, quantile, prob=.975)
```

where random errors for bootstrap samples were drawn from residuals with replacement, and lb and ub represent lower and upper bounds.

We use the following simulation to show the performance of Bayesian and bootstrap confidence intervals. Observations are generated from model (1.1) with $f(x) = \exp\{-64(x - 0.5)^2\}$, $\sigma = 0.1$, $x_i = i/n$ for $i = 1, \ldots, n$, and $n = 100$. We fit a cubic spline and construct 95\% Bayesian, percentile bootstrap (denoted as Per), and percentile-t bootstrap (denoted as T) confidence intervals. We set $B = 1000$ and repeat
the simulation 100 times. Figures 3.9(a)(b)(c) show average pointwise coverages for the Bayesian, percentile bootstrap, and percentile-t bootstrap confidence intervals, respectively. The absolute value of f'' is also plotted to show the curvature of the function. The pointwise coverage is usually smaller than the nominal value at high curvature points. Box-plots of the across-the-function coverages for these three methods are shown in Figure 3.9(d). The average and median ACPs are close to the nominal value.

FIGURE 3.9 Plots of pointwise coverages (solid line) and nominal value (dotted line) for (a) the Bayesian confidence intervals, (b) the percentile bootstrap confidence intervals, and (c) the percentile-t bootstrap confidence intervals. Dashed lines in (a), (b), and (c) represent a scaled version of $|f''|$. Boxplots of ACPs are shown in (d) with mean coverages marked as pluses and nominal value plotted as a dotted line.
3.9 Hypothesis Tests

3.9.1 The Hypothesis

One of the most useful applications of the nonparametric regression models is to check or suggest a parametric model. When appropriate, parametric models, especially linear models, are preferred in practice because of their simplicity and interpretability. One important step in building a parametric model is to investigate potential departure from a specified model. Tests with specific alternatives are often performed in practice. This kind of tests would not perform well for different forms of departure from the parametric model, especially those orthogonal to the specific alternative. For example, to detect departure from a straight line model, one may consider a quadratic polynomial as the alternative. Then departure in the form of higher-order polynomials may be missed. It is desirable to have tools that can detect general departures from a specific parametric model.

One approach to check a parametric model is to construct confidence intervals for \(f \) or its smooth component in an SSR model using methods in Section 3.8. The parametric model may be deemed unsuitable if a larger portion of its estimate is outside the confidence intervals of \(f \). When the null space \(\mathcal{H}_0 \) corresponds to the parametric model under consideration, one may check the magnitude of the estimate of the smooth component \(P_1 f \) since it represents the remaining systematic variation not explained by the parametric model under consideration. If a larger portion of the confidence intervals for \(P_1 f \) does not contain zero, the parametric model may be deemed unsuitable. This approach was illustrated using the geyser data in Section 3.8.1.

Often the confidence intervals are all one needs in practice. Nevertheless, sometimes it may be desirable to conduct a formal test on the departure from a parametric model. In this section we consider the following hypothesis

\[
\begin{align*}
H_0 : f &\in \mathcal{H}_0, \\
H_1 : f &\in \mathcal{H} \text{ and } f \notin \mathcal{H}_0,
\end{align*}
\]

(3.57)

where \(\mathcal{H}_0 \) corresponds to the parametric model. Note that when the parametric model satisfies \(L f = 0 \) with a differential operator \(L \) given in (2.53), the \(L \)-spline may be used to check or test the parametric model.

The alternative is equivalent to \(\| P_1 f \| > 0 \). Note that \(\lambda = \infty \) in (2.11), or equivalently, \(\delta = 0 \) in the corresponding Bayes model (3.25) leads to \(f \in \mathcal{H}_0 \). Thus the hypothesis (3.57) can be reexpressed as

\[
\begin{align*}
H_0 : \lambda &= \infty, \\
H_1 : \lambda &< \infty,
\end{align*}
\]

(3.58)
or

\[H_0 : \delta = 0, \quad H_1 : \delta > 0. \]

(3.59)

3.9.2 Locally Most Powerful Test

Consider the hypothesis (3.59). As in Section 3.8, we use the marginal log-likelihood of \(w_1 \), where \(w_1 = Q_2^T y \sim N(0, \delta Q_2^T M Q_2) \). Since \(Q_2 \) is orthogonal to \(T \), it is clear that the transformation \(Q_2^T y \) eliminates contribution from the model under the null hypothesis. Thus \(w_1 \) reflects signals, if any, from \(H_1 \). Note that \(M = \Sigma + n\lambda I \) and \(Q_2^T \Sigma Q_2 = U E U^T \), where notations \(Q_2, U \), and \(E \) were defined in Section 3.2. Let \(z = Q_2^T w_1 \) and denote \(z = (z_1, \ldots, z_{n-p})^T \). Then \(z \sim N(0, \delta E + \sigma^2 I) \). First assume that \(\sigma^2 \) is known. Note that \(\lambda = \sigma^2/n\delta \). The negative log-likelihood of \(z \)

\[
l(\delta | z) = \frac{1}{2} \sum_{\nu=1}^{n-p} \log(\delta e_{\nu} + \sigma^2) + \frac{1}{2} \sum_{\nu=1}^{n-p} \frac{z_{\nu}^2}{\delta e_{\nu} + \sigma^2} + C_1,
\]

(3.60)

where \(C_1 \) is a constant. Let \(U_\delta(\delta) \) and \(I_{\delta\delta}(\delta) \) be the score and Fisher information of \(\delta \). It is not difficult to check that the score test statistic (Cox and Hinkley 1974)

\[
t_{\text{score}} \triangleq \frac{U_\delta(0)}{\sqrt{I_{\delta\delta}(0)}} = C_2 \left(\sum_{\nu=1}^{n-p} e_{\nu} z_{\nu}^2 + C_3 \right),
\]

where \(C_2 \) and \(C_3 \) are constants. Therefore, the score test is equivalent to the following test statistic

\[
t_{\text{LMP}} = \sum_{\nu=1}^{n-p} e_{\nu} z_{\nu}^2.
\]

(3.61)

For polynomial splines, Cox, Koh, Wahba and Yandell (1988) showed that there is no uniformly most powerful test and that \(t_{\text{LMP}} \) is the locally most powerful test.

The variance is usually unknown in practice. Replacing \(\sigma^2 \) by its MLE under the null hypothesis (3.59), \(\hat{\sigma}^2 = \sum_{\nu=1}^{n-p} \frac{z_{\nu}^2}{(n-p)} \), leads to the approximate LMP test statistic

\[
t_{\text{appLMP}} = \frac{\sum_{\nu=1}^{n-p} e_{\nu} z_{\nu}^2}{\sum_{\nu=1}^{n-p} z_{\nu}^2}.
\]

(3.62)

The null hypothesis is rejected for large values of \(t_{\text{appLMP}} \). The test statistic \(t_{\text{appLMP}} \) does not follow a simple distribution under \(H_0 \). Nevertheless, it is straightforward to simulate the null distribution. Under
H_0, z_\nu \overset{iid}{\sim} N(0, \sigma^2). Without loss of generality, \sigma^2 can be set to one in the simulation for the null distribution since both the numerator and the denominator depend on z_\nu^2. Specifically, samples z_{\nu,j} \overset{iid}{\sim} N(0, 1) for \nu = 1, \ldots, n - p and j = 1, \ldots, N are generated, and the statistics \(t_{\text{appLMP},j} = \frac{\sum_{\nu=1}^{n-p} e_\nu z_{\nu,j}^2}{\sum_{\nu=1}^{n-p} z_{\nu,j}^2} \) are computed. Note that \(t_{\text{appLMP},j} \) are \(N \) realizations of the statistic under H_0. Then the proportion that \(t_{\text{appLMP},j} \) is greater than \(t_{\text{appLMP}} \) provides an estimate of the \(p \)-value. This approach usually requires a very large \(N \). The \(p \)-value can also be calculated numerically using the algorithm in Davies (1980). The approximation method is very fast and agrees with the results from the Monte Carlo method (Liu and Wang 2004).

3.9.3 Generalized Maximum Likelihood Test

Consider the hypothesis (3.58). Since \(z \sim N(0, \delta(E + n\lambda I)) \), the MLE of \(\delta \) is

\[
\hat{\delta} = \frac{1}{n - p} \sum_{\nu=1}^{n-p} \frac{z_\nu^2}{e_\nu + n\lambda}.
\]

From (3.39), the profile likelihood of \(\lambda \) is

\[
L_p(\lambda, \hat{\delta}|z) = C \left\{ \frac{\sum_{\nu=1}^{n-p} z_\nu^2/(e_\nu + n\lambda)}{\prod_{\nu=1}^{n-p}(e_\nu + n\lambda)^{-\frac{1}{n-p}}} \right\}^{-\frac{n-1}{n-p}}, \tag{3.63}
\]

where \(C \) is a constant. The GML estimate of \(\lambda \), \(\hat{\lambda}_{\text{GML}} \), is the maximizer of (3.63). The GML test statistic for the hypothesis (3.58) is

\[
t_{\text{GML}} \triangleq \left\{ \frac{L_p(\hat{\lambda}_{\text{GML}}|z)}{L_p(\infty|z)} \right\}^{-\frac{n-1}{n-p}} = \frac{\sum_{\nu=1}^{n-p} z_\nu^2/(e_\nu + n\hat{\lambda}_{\text{GML}})}{\prod_{\nu=1}^{n-p}(e_\nu + n\hat{\lambda}_{\text{GML}})^{-\frac{1}{n-p}}} \frac{1}{\sum_{\nu=1}^{n-p} z_\nu^2}. \tag{3.64}
\]

It is clear that the GML test is equivalent to the ratio of restricted likelihoods. The null hypothesis is rejected when \(t_{\text{GML}} \) is too small. The standard theory for likelihood ratio tests does not apply because the parameter \(\lambda \) locates on the boundary of the parameter space under the null hypothesis. Thus, it is difficult to derive the null distribution for \(t_{\text{GML}} \). The Monte Carlo method described for the LMP test can be adapted to compute an estimate of the \(p \)-value. Note that \(t_{\text{GML}} \) involves the GML estimate of the smoothing parameter. Therefore, \(\hat{\lambda}_{\text{GML}} \) needs to be estimated for each simulation sample, which makes this approach computationally intensive.
The null distribution of \(- (n-p) \log t_{GML}\) can be well approximated by a mixture of \(\chi^2_1\) and \(\chi^2_0\), denoted by \(r \chi^2_0 + (1-r) \chi^2_1\). However, the ratio \(r\) is not fixed. It is difficult to derive a formula for \(r\) since it depends on many factors. One can approximate the ratio \(r\) first and then calculate the \(p\)-value based on the mixture of \(\chi^2_1\) and \(\chi^2_0\) with the approximated \(r\). A relatively small sample size is required to approximate \(r\). See Liu and Wang (2004) for details.

3.9.4 Generalized Cross-Validation Test

Consider the hypothesis (3.58). Let \(\lambda_{\text{GCV}}\) be the GCV estimate of \(\lambda\). Similar to the GML test statistic, the GCV test statistic is defined as the ratio between GCV scores

\[
t_{\text{GCV}} = \frac{\text{GCV}(\lambda_{\text{GCV}})}{\text{GCV}(\infty)} = \frac{(n-p)^2 \sum_{\nu=1}^{n-p} z^2_{\nu}/(1 + e_{\nu}/n_{\lambda_{\text{GCV}}})^2}{\sum_{\nu=1}^{n-p} 1/(1 + e_{\nu}/n_{\lambda_{\text{GCV}}})^2 \sum_{\nu=1}^{n-p} z^2_{\nu}}.
\]

\[(3.65)\]

\(H_0\) is rejected when \(t_{\text{GCV}}\) is too small. Again, similar to the GML test, the Monte Carlo method can be used to compute an estimate of the \(p\)-value.

3.9.5 Comparison and Implementation

The LMP and GML tests derived based on Bayesian arguments perform well under deterministic models. In terms of eigenvectors of \(Q^T \Sigma Q\), the LMP test is more powerful in detecting departure in the direction of the first eigenvector, the GML test is more powerful in detecting departure in low-frequencies, and the GCV test is more powerful in detecting departure in high frequencies. See Liu and Wang (2004) for more details.

These tests can be carried out using the \texttt{anova} function in the \texttt{assist} package. We now use the geyser and Arosa data to illustrate how to use this function.

For the geyser data, first consider the following hypotheses

\(H_0 : f \in \text{span}\{1, x\}, \quad H_1 : f \in W^2_2[0, 1] \text{ and } f \not\in \text{span}\{1, x\}\).

We have fitted cubic spline model where the null space corresponds to the model under \(H_0\). Therefore, we can test the hypothesis as follows:

\[> \text{anova(geyser.cub.fit, simu.size=500)}\]
Testing H_0: f in the NULL space

\[
\begin{array}{ccc}
\text{test.value} & \text{simu.size} & \text{simu.p-value} \\
\text{LMP} & 0.02288057 & 500 & 0 \\
\text{GCV} & 0.00335470 & 500 & 0 \\
\end{array}
\]

where the option \text{simu.size} specifies the Monte Carlo sample size N. The simple linear model is rejected. Next we consider the hypothesis

H_0: $f \in \text{span}\{1, x, s\}$, \quad \quad H_1: $f \in W_2^2[0, 1]$ and $f \notin \text{span}\{1, x, s\}$,

where $s = (x - 0.397)^0$. We have fitted a partial spline model where the null space corresponds to the model under H_0. Therefore, we can test the hypothesis as follows:

\[\text{> anova(geyser.ps.fit, simu.size=500)}\]

Testing H_0: f in the NULL space

\[
\begin{array}{ccc}
\text{test.value} & \text{simu.size} & \text{simu.p-value} \\
\text{LMP} & 0.000351964 & 500 & 0.602 \\
\text{GCV} & 0.003717477 & 500 & 0.602 \\
\end{array}
\]

The null hypothesis is not rejected. The conclusions are the same as those based on Bayesian confidence intervals. To apply the GML test, we need to first fit using the GML method to select the smoothing parameter:

\[\text{> geyser.ps.fit.m <- ssr(waiting~x+s, rk=cubic(x), spar='m')}\]

\[\text{> anova(geyser.ps.fit.m, simu.size=500)}\]

Testing H_0: f in the NULL space

\[
\begin{array}{cccc}
\text{test.value} & \text{simu.size} & \text{simu.p-value} & \text{approximate.p-value} \\
\text{LMP} & 0.000351964 & 500 & 0.634 & 0.5 \\
\text{GML} & 1.0000001 & 500 & 0.634 \\
\end{array}
\]

where the \text{approximate.p-value} was computed using the mixture of two Chi-square distributions.

For the Arosa data, consider the hypothesis

H_0: $f \in \mathcal{P}$, \quad \quad H_1: $f \in W_2^2(\text{per})$ and $f \notin \mathcal{P}$,

where $\mathcal{P} = \text{span}\{1, \sin 2\pi x, \cos 2\pi x\}$ is the model space for the sinusoidal model. Two approaches can be used to test the above hypothesis: fit a partial spline and fit an L-spline:
> arosa.ps.fit <- ssr(thick~sin(2*pi*x)+cos(2*pi*x),
 rk=periodic(x), data=Arosa)
> anova(arosa.ps.fit,simu.size=500)

Testing H_0: f in the NULL space

<table>
<thead>
<tr>
<th>test.value</th>
<th>simu.size</th>
<th>simu.p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP</td>
<td>0.001262064</td>
<td>500</td>
</tr>
<tr>
<td>GCV</td>
<td>0.001832394</td>
<td>500</td>
</tr>
</tbody>
</table>

> arosa.ls.fit <- ssr(thick~sin(2*pi*x)+cos(2*pi*x),
 rk=lspline(x,type='sine1'))
> anova(arosa.ls.fit,simu.size=500)

Testing H_0: f in the NULL space

<table>
<thead>
<tr>
<th>test.value</th>
<th>simu.size</th>
<th>simu.p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP</td>
<td>2.539163e-06</td>
<td>500</td>
</tr>
<tr>
<td>GCV</td>
<td>0.001828071</td>
<td>500</td>
</tr>
</tbody>
</table>

The test based on the L-spline is usually more powerful since the parametric and the smooth components are orthogonal.
Chapter 4

Smoothing Spline ANOVA

4.1 Multiple Regression

Consider the problem of building regression models that examine the relationship between a dependent variable y and multiple independent variables x_1, \ldots, x_d. For generality, let the domain of each x_k be an arbitrary set X_k. Denote $x = (x_1, \ldots, x_d)$. Given observations (x_i, y_i) for $i = 1, \ldots, n$, where $x_i = (x_{i1}, \ldots, x_{id})$, a multiple regression model relates the dependent variable and independent variables as follows:

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

where f is a multivariate regression function, and ϵ_i are zero-mean independent random errors with a common variance σ^2. The goal is to construct a model for f and estimate it based on noisy data.

There exist many different methods to construct a model space for f, parametrically, semiparametrically, or nonparametrically. For example, a thin-plate spline model may be used when all x_k are univariate continuous variables, and partial spline models may be used if a linear parametric model can be assumed for all but one variable. This chapter introduces a nonparametric approach called smoothing spline analysis of variance (smoothing spline ANOVA or SS ANOVA) decomposition for constructing model spaces for the multivariate function f.

The multivariate function f is defined on the product domain $\mathcal{X} = X_1 \times X_2 \times \cdots \times X_d$. Note that each X_k is arbitrary: it may be a continuous interval, a discrete set, a unit circle, a unit sphere, or \mathbb{R}^d. Construction of model spaces for a single variable was introduced in Chapter 2. Let $\mathcal{H}^{(k)}$ be an RKHS on X_k. The choice of the marginal space $\mathcal{H}^{(k)}$ depends on the domain X_k and prior knowledge about f as a function of x_k. To model the joint function f, we start with the tensor product of these marginal spaces defined in the following section.
4.2 Tensor Product Reproducing Kernel Hilbert Spaces

First consider the simple case when \(d = 2 \). Denote RKs for \(\mathcal{H}(1) \) and \(\mathcal{H}(2) \) as \(R^{(1)} \) and \(R^{(2)} \), respectively. It is known that the product of non-negative definite functions is nonnegative definite (Gu 2002). As RKs, both \(R^{(1)} \) and \(R^{(2)} \) are nonnegative definite. Therefore, the bivariate function on \(X = X_1 \times X_2 \)

\[
R((x_1, x_2), (z_1, z_2)) \triangleq R^{(1)}(x_1, z_1)R^{(2)}(x_2, z_2)
\]

is nonnegative definite. By Moore–Aronszajn theorem, there exists a unique RKHS \(\mathcal{H} \) on \(X = X_1 \times X_2 \) such that \(R \) is its RK. The resulting RKHS \(\mathcal{H} \) is called the tensor product RKHS and is denoted as \(\mathcal{H}(1) \otimes \mathcal{H}(2) \).

For \(d > 2 \), the tensor product RKHS of \(\mathcal{H}(1), \ldots, \mathcal{H}(d) \) on the product domain \(X = X_1 \times X_2 \times \cdots \times X_d \), \(\mathcal{H}(1) \otimes \mathcal{H}(2) \otimes \cdots \otimes \mathcal{H}(d) \), is defined recursively. Note that the RK for a tensor product space equals the product of RKs of marginal spaces. That is, the RK of \(\mathcal{H}(1) \otimes \mathcal{H}(2) \otimes \cdots \otimes \mathcal{H}(d) \) equals

\[
R(x, z) = R^{(1)}(x_1, z_1)R^{(2)}(x_2, z_2) \cdots R^{(d)}(x_d, z_d),
\]

where \(x \in X, z = (z_1, \ldots, z_d) \in X, X = X_1 \times X_2 \times \cdots \times X_d \), and \(R^{(k)} \) is the RK of \(\mathcal{H}(k) \) for \(k = 1, \ldots, d \).

For illustration, consider the ultrasound data consisting of tongue shape measurements over time from ultrasound imaging. The data set contains observations on the response variable \text{height} (y) and three independent variables: \text{environment} (x_1), \text{length} (x_2), and \text{time} (x_3). The variable \(x_1 \) is a factor with three levels: \(1, 2, 3 \) corresponding to \text{swords}, \text{cluster}, and \text{schwa}, respectively. Both continuous variables \(x_2 \) and \(x_3 \) are scaled into \([0, 1]\). Interpolations of the raw data are shown in Figure 4.1.

In linguistic studies, researchers want to determine (1) how tongue shapes for an articulation differ under different environments, (2) how the tongue shape changes as a function of time, and (3) how changes over time differ under different environments. To address the first question at a fixed time point, we need to model a bivariate regression function \(f(x_1, x_2) \). Assume marginal spaces \(\mathbb{R}^3 \) and \(W_m^1[0, 1] \) for variables \(x_1 \) and \(x_2 \), respectively. Then we may consider the tensor product space \(\mathbb{R}^3 \otimes W_m^1[0, 1] \) for the bivariate function \(f \). To address the second question, for a fixed environment, we need to model a bivariate regression function \(f(x_2, x_3) \). Assume marginal spaces \(W_m^{m_1}[0, 1] \) and \(W_m^{m_2}[0, 1] \) for variables
FIGURE 4.1 Ultrasound data, 3-d plots of observations.

x_2 and x_3, respectively. Then we may consider the tensor product space $W^{m_1}_2[0,1] \otimes W^{m_2}_2[0,1]$ for the bivariate function. To address the third question, we need to model a trivariate regression function $f(x_1, x_2, x_3)$. We may consider the tensor product space $\mathbb{R}^3 \otimes W^{m_1}_2[0,1] \otimes W^{m_2}_2[0,1]$ for the trivariate function. Analysis of the ultrasound data are given in Section 4.9.1.

The SS ANOVA decomposition decomposes a tensor product space into subspaces with a hierarchical structure similar to the main effects and interactions in the classical ANOVA. The resulting hierarchical structure facilitates model selection and interpretation. Sections 4.3, 4.4, and 4.5 present SS ANOVA decompositions for a single space, tensor product of two spaces, and tensor product of d spaces. More SS ANOVA decompositions can be found in Sections 4.9, 5.4.4, 6.3, and 9.2.4.

4.3 One-Way SS ANOVA Decomposition

SS ANOVA decompositions of tensor product RKHS’s are based on decompositions of marginal spaces for each independent variable. Therefore, decompositions for a single space are introduced first in this section. Spline models for a single independent variable have been introduced in Chapter 2. Denote the independent variable as x and the regression
function as \(f \). It was assumed that \(f \) belongs to an RKHS \(\mathcal{H} \). The function \(f \) was decomposed into a parametric and a smooth component, \(f = f_0 + f_1 \), or in terms of model space, \(\mathcal{H} = H_0 \oplus H_1 \). This can be regarded as one form of the SS ANOVA decomposition. We now introduce general decompositions based on averaging operators. Consider a function space \(\mathcal{H} \) on the domain \(\mathcal{X} \). An operator \(A \) is called an averaging operator if \(A = A^2 \). Instead of the more appropriate term as an idempotent operator, the term averaging operator is used since it is motivated by averaging in the classical ANOVA decomposition. Note that an averaging operator does not necessarily involve averaging. As we will see in the following subsections, the commonly used averaging operators are projection operators. Thus they are idempotent.

Suppose model space \(\mathcal{H} = H_0 \oplus H_1 \), where \(H_0 \) is a finite dimensional space with orthogonal basis \(\phi_1(x), \ldots, \phi_p(x) \). Let \(A_\nu \) be the projection operator onto the subspace \(\{ \phi_\nu(x) \} \) for \(\nu = 1, \ldots, p \), and \(A_{p+1} \) be the projection operator onto \(H_1 \). Then the function can be decomposed as

\[
 f = (A_1 + \cdots + A_p + A_{p+1}) f = f_0 + \cdots + f_0 + f_1. \tag{4.2}
\]

Correspondingly, the model space is decomposed into

\[
 \mathcal{H} = \{ \phi_1(x) \} \oplus \cdots \oplus \{ \phi_p(x) \} \oplus H_1.
\]

For simplicity, \(\{ \cdot \} \) represents the space spanned by the basis functions inside the bracket. Some averaging operators \(A_\nu \) (subspaces) can be combined. For example, combining \(A_1, \ldots, A_p \) leads to the decomposition \(f = f_0 + f_1 \), a parametric component plus a smooth component. When \(\phi_1(x) = 1 \), combining \(A_2, \ldots, A_{p+1} \) leads to the decomposition \(f = f_{01} + f_1 \), where \(f_{01} \) is a constant independent of \(x \), and \(f_1 = f_{02} + \cdots + f_{0p} + f_1 \) collects all components that depend on \(x \). Therefore, \(f = f_{01} + f_1 \) decomposes the function into a constant plus a nonconstant function.

For the same model space, different SS ANOVA decompositions may be constructed for different purposes. In general, we denote the one-way SS ANOVA decomposition as

\[
 f = A_1 f + \cdots + A_r f, \tag{4.3}
\]

where \(A_1 + \cdots + A_r = I \), and \(I \) is the identity operator. The above equality always holds since \(f = If \). Equivalently, in terms of the model space, the one-way SS ANOVA decomposition is denoted as

\[
 \mathcal{H} = H_{(1)} \oplus \cdots \oplus H_{(r)}.
\]

The following subsections provide one-way SS ANOVA decompositions for some special model spaces.
4.3.1 Decomposition of \mathbb{R}^a: One-Way ANOVA

Suppose x is a discrete variable with a levels. The classical one-way mean model assumes that

$$y_{ik} = \mu_i + \epsilon_{ik}, \quad i = 1, \ldots, a; \ k = 1, \ldots, n_i, \quad (4.4)$$

where y_{ik} represents the observation of the kth replication at level i of x, μ_i represents the mean at level i, and ϵ_{ik} represent random errors.

Regarding μ_i as a function of i and expressing explicitly as $f(i) \triangleq \mu_i$, then f is a function defined on the discrete domain $X = \{1, \ldots, a\}$. It is easy to see that the model space for f is the Euclidean a-space \mathbb{R}^a.

Model space construction and decomposition of \mathbb{R}^a

The space \mathbb{R}^a is an RKHS with the inner product $(f, g) = f^T g$. Furthermore, $\mathbb{R}^a = \mathcal{H}_0 \oplus \mathcal{H}_1$, where

$$\mathcal{H}_0 = \{ f : f(1) = \cdots = f(a) \},$$
$$\mathcal{H}_1 = \{ f : \sum_{i=1}^{a} f(i) = 0 \}, \quad (4.5)$$

are RKHS’s with corresponding RKs

$$R_0(i,j) = \frac{1}{a},$$
$$R_1(i,j) = \delta_{i,j} - \frac{1}{a} \quad (4.6)$$

and $\delta_{i,j}$ is the Kronecker delta.

Details about the above construction can be found in Gu (2002). Define an averaging operator $A_1 : \mathbb{R}^a \rightarrow \mathbb{R}^a$ such that

$$A_1 f = \frac{1}{a} \sum_{i=1}^{a} f(i).$$

The operator A_1 maps f to the constant function that equals the average over all indices. Let $A_2 = I - A_1$. The one-way ANOVA effect model is based on the following decomposition of the function f:

$$f = A_1 f + A_2 f \triangleq \mu + \alpha_i, \quad (4.7)$$

where μ is the overall mean, and α_i is the effect at level i. From the definition of the averaging operator, α_i satisfy the sum-to-zero side condition $\sum_{i=1}^{a} \alpha_i = 0$. It is clear that A_1 and A_2 are the projection operators
96

Smoothing Splines: Methods and Applications

from \(\mathbb{R}^n \) onto \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \) defined in (4.5). Thus, they divide \(\mathbb{R}^n \) into \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \).

Under the foregoing construction, \(||P_1 f||^2 = \sum_{i=1}^{n} (f(i) - \bar{f})^2 \), where \(\bar{f} = \sum_{i=1}^{n} f(i)/n \). For balanced designs with \(n_i = n \), the solution to the PLS (2.11) is

\[
\hat{f}(i) = \bar{y}_i - \frac{a\lambda}{1 + a\lambda}(\bar{y}_i - \bar{y} - \bar{y}),
\]

(4.8)

where \(\bar{y}_i = \sum_{k=1}^{n} y_{ik}/n \), and \(\bar{y} = \sum_{i=1}^{n} \bar{y}_i / n \). It is easy to check that when \(n = 1 \), \(\sigma^2 = 1 \) and \(\lambda = (a - 3)/a(\sum_{i=1}^{n} \bar{y}_i^2 - a + 3) \), the spline estimate \(\hat{f} \) is the James–Stein estimator (shrink toward mean). Therefore, in a sense, the Stein’s shrinkage estimator can be regarded as spline estimate on a discrete domain.

There exist other ways to decompose \(\mathbb{R}^n \). For example, the averaging operator \(A_1 f = f(1) \) leads to the same decomposition as (4.7) with the set-to-zero side condition: \(a_1 = 0 \) (Gu 2002).

4.3.2 Decomposition of \(W_m^2[a,b] \)

Under the construction in Section 2.2, let

\[
A_\nu f(x) = f^{(\nu-1)}(a)(x-a)^{\nu-1}/(\nu-1)!, \quad \nu = 1, \ldots, m.
\]

(4.9)

It is easy to see that \(A_\nu^2 = A_\nu \). Thus, they are averaging operators. In fact, \(A_\nu \) is the projection operator onto \(\{ (x-a)^{\nu-1}/(\nu-1)! \} \). Let \(A_{m+1} = I - A_1 - \cdots - A_m \). The decomposition

\[
f = A_1 f + \cdots + A_m f + A_{m+1} f
\]

corresponds to the Taylor expansion (1.5). It decomposes the model space \(W_m^2[a,b] \) into

\[
W_m^2[a,b] = \{1\} \oplus \{x-a\} \oplus \cdots \oplus \{(x-a)^{m-1}/(m-1)!\} \oplus \mathcal{H}_1,
\]

where \(\mathcal{H}_1 \) is given in (2.3). For \(f \in \mathcal{H}_1 \), conditions \(f^{(\nu)}(a) = 0 \) for \(\nu = 0, \ldots, m-1 \) are analogous to the set-to-zero condition in the classical one-way ANOVA model.

Under the construction in Section 2.6 for \(W_m^2[0,1] \), let

\[
A_\nu f(x) = \left\{ \int_0^1 f^{(\nu-1)}(u)du \right\} k_\nu(x), \quad \nu = 1, \ldots, m.
\]

Again, \(A_\nu \) is an averaging (projection) operator extracting the polynomial of order \(\nu \). In particular, \(A_1 f = \int_0^1 f(u)du \) is a natural extension
of the averaging in the discrete domain. Let \(A_{m+1} = I - A_1 - \cdots - A_m \).

The decomposition

\[
f = A_1 f + \cdots + A_m f + A_{m+1} f
\]

decomposes the model space \(W_2^m \) into

\[
W_2^m = \{1\} \oplus \{k_1(x)\} \oplus \cdots \oplus \{k_{m-1}(x)\} \oplus \mathcal{H}_1,
\]

where \(\mathcal{H}_1 \) is given in (2.29). For \(f \in \mathcal{H}_1 \), conditions \(\int_0^1 f^{(\nu)} dx = 0 \) for \(\nu = 0, \ldots, m - 1 \) are analogous to the sum-to-zero condition in the classical one-way ANOVA model.

4.3.3 Decomposition of \(W_2^m(\text{per}) \)

Under the construction in Section 2.7, let

\[
A_1 f = \int_0^1 f du
\]

be an averaging (projection) operator. Let \(A_2 = I - A_1 \). The decomposition

\[
f = A_1 f + A_2 f
\]

decomposes the model space

\[
W_2^m(\text{per}) = \{1\} \oplus \{ f \in W_2^m(\text{per}) : \int_0^1 f du = 0 \}.
\]

4.3.4 Decomposition of \(W_2^m(\mathbb{R}^d) \)

For simplicity, consider the special case with \(d = 2 \) and \(m = 2 \). Decompositions for general \(d \) and \(m \) can be derived similarly. Let \(\phi_1(x) = 1 \), \(\phi_2(x) = x_1 \), and \(\phi_3(x) = x_2 \) be polynomials of total degree less than \(m = 2 \). Let \(\tilde{\phi}_1 = 1 \), and \(\tilde{\phi}_2 \) and \(\tilde{\phi}_3 \) be an orthonormal basis such that \((\tilde{\phi}_\nu, \phi_\mu)_0 = \delta_{\nu,\mu} \) based on the norm (2.41). Define two averaging operators

\[
A_1 f(x) = \sum_{j=1}^J w_j f(u_j),
\]

\[
A_2 f(x) = \sum_{j=1}^J w_j f(u_j) \{ \tilde{\phi}_2(u_j) \tilde{\phi}_2(x) + \tilde{\phi}_3(u_j) \tilde{\phi}_3(x) \},
\]

(4.10)
where \(u_j \) are fixed points in \(\mathbb{R}^2 \), and \(w_j \) are fixed positive weights such that \(\sum_{j=1}^{J} w_j = 1 \). It is clear that \(A_1 \) and \(A_2 \) are projection operators onto spaces \(\{ \tilde{\phi}_1 \} \) and \(\{ \tilde{\phi}_2, \tilde{\phi}_3 \} \), respectively. To see how they generalize averaging operators, define a probability measure \(\mu \) on \(\mathcal{X} = \mathbb{R}^2 \) by assigning probability \(w_j \) to the point \(u_j, j = 1, \ldots, J \). Then \(A_1 f(x) = \int_{\mathbb{R}^2} f \tilde{\phi}_1 d\mu \) and \(A_2 f(x) = (\int_{\mathbb{R}^2} f \tilde{\phi}_2 d\mu) \tilde{\phi}_2 (x) + (\int_{\mathbb{R}^2} f \tilde{\phi}_3 d\mu) \tilde{\phi}_3 (x) \). Therefore, \(A_1 \) and \(A_2 \) take averages with respect to the discrete probability measure \(\mu \). In particular, \(\mu \) puts mass \(1/n \) on design points \(x_j \) when \(J = n \), \(w_j = 1/n \) and \(u_j = x_j \). A continuous density on \(\mathbb{R}^2 \) may be used. However, the resulting integrals usually do not have closed forms, and approximations such as a quadrature formula would have to be used. It is then essentially equivalent to using an approximate discrete probability measure.

Let \(A_3 = I - A_1 - A_2 \). The decomposition
\[
f = A_1 f + A_2 f + A_3 f
\]
divides the model space
\[
W^m_{2}(\mathbb{R}^2) = \{1\} \oplus \{\tilde{\phi}_2, \tilde{\phi}_3\} \oplus \{f \in W^m_{2}(\mathbb{R}^2) : J_{2}^2(f) = 0\},
\]
where \(J_{m}^2(f) \) is defined in (2.36).

4.4 Two-Way SS ANOVA Decomposition

Suppose there are two independent variables, \(x_1 \in \mathcal{X}_1 \) and \(x_2 \in \mathcal{X}_2 \). Consider the tensor product space \(\mathcal{H}(1) \otimes \mathcal{H}(2) \) on the product domain \(\mathcal{X}_1 \times \mathcal{X}_2 \). For \(f \) as a marginal function of \(x_k \), assume the following one-way decomposition based on Section 4.3,
\[
f = A_{1}^{(k)} f + \cdots + A_{r_k}^{(k)} f, \quad k = 1, 2,
\]
(4.11)

where \(A_{j}^{(k)} \) are averaging operators on \(\mathcal{H}^{(k)} \) and \(\sum_{j=1}^{r_k} A_{j}^{(k)} = I \). Then for the joint function, we have
\[
f = \{A_{1}^{(1)} + \cdots + A_{r_1}^{(1)}\} \{A_{1}^{(2)} + \cdots + A_{r_2}^{(2)}\} f = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} A_{j_1}^{(1)} A_{j_2}^{(2)} f. \quad (4.12)
\]

The above decomposition of the bivariate function \(f \) is referred to as the \textit{two-way SS ANOVA} decomposition.
Denote
\[\mathcal{H}^{(k)} = \mathcal{H}^{(k)}_{(1)} \oplus \cdots \oplus \mathcal{H}^{(k)}_{(r_k)}, \quad k = 1, 2, \]
as the one-way decomposition to \(\mathcal{H}^{(k)} \) associated with (4.11). Then, (4.12) decomposes the tensor product space
\[\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} = \left\{ \mathcal{H}^{(1)}_{(1)} \oplus \cdots \oplus \mathcal{H}^{(1)}_{(r_1)} \right\} \otimes \left\{ \mathcal{H}^{(2)}_{(1)} \oplus \cdots \oplus \mathcal{H}^{(2)}_{(r_2)} \right\} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{H}^{(1)}_{(j_1)} \otimes \mathcal{H}^{(2)}_{(j_2)}.
\]

Consider the special case when \(r_k = 2 \) for \(k = 1, 2 \). Assume that \(A^{(k)}_1 f \) is independent of \(x_k \), or equivalently, \(\mathcal{H}_0^{(k)} = \{1\} \). Then the decomposition (4.12) can be written as
\[f = A^{(1)}_1 A^{(2)}_1 f + A^{(1)}_2 A^{(2)}_1 f + A^{(1)}_1 A^{(2)}_2 f + A^{(1)}_2 A^{(2)}_2 f \]
\[\triangleq \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1,x_2), \quad (4.13) \]
where \(\mu \) represents the grand mean, \(f_1(x_1) \) and \(f_2(x_2) \) represent the main effects of \(x_1 \) and \(x_2 \), respectively, and \(f_{12}(x_1,x_2) \) represents the interaction between \(x_1 \) and \(x_2 \).

For general \(r_k \), assuming \(A^{(k)}_1 f \) is independent of \(x_k \), the decomposition (4.13) can be derived by combining operators \(A^{(k)}_2, \ldots, A^{(k)}_{r_k} \) into one averaging operator \(\tilde{A}^{(k)}_2 = A^{(k)}_2 + \cdots + A^{(k)}_{r_k} \). Therefore, decomposition (4.13) combines components in (4.12) and reorganizes them into the overall main effects and interactions.

The following subsections provide two-way SS ANOVA decompositions for combinations of some special model spaces.

4.4.1 Decomposition of \(\mathbb{R}^a \otimes \mathbb{R}^b \): Two-Way ANOVA

Suppose both \(x_1 \) and \(x_2 \) are discrete variables with \(a \) and \(b \) levels, respectively. The classical two-way mean model assumes that
\[y_{ijk} = \mu_{ij} + \epsilon_{ijk}, \quad i = 1, \ldots, a; \ j = 1, \ldots, b; \ k = 1, \ldots, n_{ij}, \]
where \(y_{ijk} \) represents the observation of the \(k \)th replication at level \(i \) of \(x_1 \), and level \(j \) of \(x_2 \), \(\mu_{ij} \) represents the mean at level \(i \) of \(x_1 \) and level \(j \) of \(x_2 \), and \(\epsilon_{ijk} \) represent random errors.

Regarding \(\mu_{ij} \) as a bivariate function of \((i,j)\) and letting \(f(i,j) \triangleq \mu_{ij} \), then \(f \) is a bivariate function defined on the product domain \(\mathcal{X} = \{1, \ldots, a\} \times \{1, \ldots, b\} \). The model space for \(f \) is the tensor product space
Define two averaging operators $A^{(1)}_1$ and $A^{(2)}_1$ such that

$$A^{(1)}_1 f = \frac{1}{a} \sum_{i=1}^{a} f(i, j),$$

$$A^{(2)}_1 f = \frac{1}{b} \sum_{j=1}^{b} f(i, j).$$

$A^{(1)}_1$ and $A^{(2)}_1$ map f to univariate functions by averaging over all levels of x_1 and x_2, respectively. Let $A^{(1)}_2 = I - A^{(1)}_1$ and $A^{(2)}_2 = I - A^{(2)}_1$. Then the classical two-way ANOVA effect model is based on the following SS ANOVA decomposition of the function f:

$$f = (A^{(1)}_1 + A^{(2)}_1)(A^{(1)}_2 + A^{(2)}_2)f = A^{(1)}_1 A^{(2)}_1 f + A^{(1)}_1 A^{(2)}_2 f + A^{(1)}_2 A^{(2)}_1 f + A^{(1)}_2 A^{(2)}_2 f \triangleq \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij},$$

(4.14)

where μ represents the overall mean, α_i represents the main effect of x_1, β_j represents the main effect of x_2, and $(\alpha\beta)_{ij}$ represents the interaction between x_1 and x_2. The sum-to-zero side conditions are satisfied from the definition of the averaging operators.

Based on one-way ANOVA decomposition in Section 4.3.1, we have $\mathbb{R}^a = \mathcal{H}^{(1)}_0 \oplus \mathcal{H}^{(1)}_1$ and $\mathbb{R}^b = \mathcal{H}^{(2)}_0 \oplus \mathcal{H}^{(2)}_1$, where $\mathcal{H}^{(1)}_0$ and $\mathcal{H}^{(2)}_0$ are subspaces containing constant functions, and $\mathcal{H}^{(1)}_1$ and $\mathcal{H}^{(2)}_1$ are orthogonal complements of $\mathcal{H}^{(1)}_0$ and $\mathcal{H}^{(2)}_0$, respectively. The classical two-way ANOVA model decomposes the tensor product space

$$\mathbb{R}^a \otimes \mathbb{R}^b = \left\{ \mathcal{H}^{(1)}_0 \oplus \mathcal{H}^{(1)}_1 \right\} \otimes \left\{ \mathcal{H}^{(2)}_0 \oplus \mathcal{H}^{(2)}_1 \right\} = \left\{ \mathcal{H}^{(1)}_0 \otimes \mathcal{H}^{(2)}_0 \right\} \oplus \left\{ \mathcal{H}^{(1)}_1 \otimes \mathcal{H}^{(2)}_0 \right\} \oplus \left\{ \mathcal{H}^{(1)}_0 \otimes \mathcal{H}^{(2)}_1 \right\} \oplus \left\{ \mathcal{H}^{(1)}_1 \otimes \mathcal{H}^{(2)}_1 \right\}. \quad (4.15)$$

The four subspaces in (4.15) contain components μ, α_i, β_j, and $(\alpha\beta)_{ij}$ in (4.14), respectively.

4.4.2 Decomposition of $\mathbb{R}^a \otimes W^m_2[0, 1]$

Suppose x_1 is a discrete variable with a levels, and x_2 is a continuous variable in $[0, 1]$. A natural model space for x_1 is \mathbb{R}^a and a natural model space for x_2 is $W^m_2[0, 1]$. Therefore, we consider the tensor product space $\mathbb{R}^a \otimes W^m_2[0, 1]$ for the bivariate regression function $f(x_1, x_2)$. For
simplicity, we derive SS ANOVA decompositions for \(m = 1 \) and \(m = 2 \) only. SS ANOVA decompositions for higher-order \(m \) can be derived similarly. In this and the remaining sections, the construction in Section 2.6 for the marginal space \(W_2^m[0,1] \) will be used. Similar SS ANOVA decompositions can be derived under the construction in Section 2.2.

Consider the tensor product space \(\mathbb{R}^a \otimes W_2^1[0,1] \) first. Define two averaging operators \(A_1^{(1)} \) and \(A_1^{(2)} \) as

\[
A_1^{(1)} f = \frac{1}{a} \sum_{x_1=1}^a f,
\]

\[
A_1^{(2)} f = \int_0^1 f dx_2,
\]

where \(A_1^{(1)} \) and \(A_1^{(2)} \) extract the constant term out of all possible functions for each variable. Let \(A_2^{(1)} = I - A_1^{(1)} \) and \(A_2^{(2)} = I - A_1^{(2)} \). Then

\[
f = \{A_1^{(1)} + A_2^{(1)}\} \{A_1^{(2)} + A_2^{(2)}\} f
\]

\[
= A_1^{(1)} A_1^{(2)} f + A_2^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_2^{(1)} A_2^{(2)} f
\]

\[
\triangleq \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2).
\]

(4.16)

Obviously, (4.16) is a natural extension of the classical two-way ANOVA decomposition (4.14) from the product of two discrete domains to the product of one discrete and one continuous domain. As in the classical ANOVA model, components in (4.16) have nice interpretations: \(\mu \) represents the overall mean, \(f_1(x_1) \) represents the main effect of \(x_1 \), \(f_2(x_2) \) represents the main effect of \(x_2 \), and \(f_{12}(x_1, x_2) \) represents the interaction. Components also have nice interpretation collectively: \(\mu + f_2(x_2) \) represents the mean curve among all levels of \(x_1 \), and \(f_1(x_1) + f_{12}(x_1, x_2) \) represents the departure from the mean curve at level \(x_1 \). Write \(\mathbb{R}^a = \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \) and \(W_2^1[0,1] = \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \), where \(\mathcal{H}_0^{(1)} \) and \(\mathcal{H}_1^{(1)} \) are given in (4.5), \(\mathcal{H}_0^{(2)} = \{1\} \) and \(\mathcal{H}_1^{(2)} = \{ f \in W_2^1[0,1]: \int_0^1 f du = 0 \} \). Then, in terms of the model space, (4.16) decomposes

\[
\mathbb{R}^a \otimes W_2^1[0,1]
\]

\[
= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \right\} \otimes \left\{ \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \right\}
\]

\[
= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_0^{(2)} \right\} \otimes \left\{ \mathcal{H}_1^{(1)} \oplus \mathcal{H}_1^{(2)} \right\} \otimes \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(2)} \right\}
\]

\[
\triangleq \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3.
\]

(4.17)

To fit model (4.16), we need to find basis for \(\mathcal{H}_0 \) and RKs for \(\mathcal{H}_1, \mathcal{H}_2, \) and \(\mathcal{H}_3 \). It is clear that \(\mathcal{H}_0 \) contains all constant functions. Thus, \(\mathcal{H}_0 \)
is an one-dimensional space with the basis \(\phi(x) = 1 \). The RKs of \(\mathcal{H}^{(1)}_0 \) and \(\mathcal{H}^{(1)}_1 \) are given in (4.6), and the RKs of \(\mathcal{H}^{(2)}_0 \) and \(\mathcal{H}^{(2)}_1 \) are given in Table 2.2. The RKs of \(\mathcal{H}^1, \mathcal{H}^2, \) and \(\mathcal{H}^3 \) can be calculated using the fact that the RK of a tensor product space equals the product of RKs of the involved marginal spaces. For example, the RK of \(\mathcal{H}^3 = \mathcal{H}^{(1)}_1 \otimes \mathcal{H}^{(2)}_1 \) equals \((\delta_{x_1,z_1} - 1/a)\{k_1(x_2)k_1(z_2) + k_2(|x_2 - z_2|)\} \).

Now suppose we want to model the effect of \(x_2 \) using the cubic spline space \(W^2_2[0,1] \). Consider the tensor product space \(\mathbb{R}^a \otimes W^2_2[0,1] \). Define three averaging operators \(A^{(1)}_1, A^{(2)}_1, \) and \(A^{(2)}_2 \) as

\[
A^{(1)}_1 f = \frac{1}{a} \sum_{a_1=1}^a f, \\
A^{(2)}_1 f = \int_0^1 f \, dx_2, \\
A^{(2)}_2 f = \left(\int_0^1 f' \, dx_2 \right) (x_2 - 0.5),
\]

where \(A^{(1)}_1 \) and \(A^{(2)}_1 \) extract the constant function out of all possible functions for each variable, and \(A^{(2)}_2 \) extracts the linear function for \(x_2 \). Let \(A^{(1)}_2 = I - A^{(1)}_1 \) and \(A^{(2)}_2 = I - A^{(2)}_1 - A^{(2)}_2 \). Then

\[
f = \{A^{(1)}_1 + A^{(2)}_1\} \{A^{(2)}_1 + A^{(2)}_2 + A^{(2)}_3\} f \\
= A^{(1)}_1 A^{(2)}_1 f + A^{(1)}_1 A^{(2)}_2 f + A^{(1)}_1 A^{(2)}_3 f \\
+ A^{(2)}_2 A^{(2)}_1 f + A^{(2)}_2 A^{(2)}_2 f + A^{(2)}_2 A^{(2)}_3 f \\
\triangleq \mu + \beta \times (x_2 - 0.5) + f^*_2(x_2) \\
+ f_1(x_1) + \gamma_{x_1} \times (x_2 - 0.5) + f^*_{12}(x_1,x_2),
\]

where \(\mu \) represents the overall mean, \(f_1(x_1) \) represents the main effect of \(x_1, \beta \times (x_2 - 0.5) \) represents the main effect of \(x_2, f^*_2(x_2) \) represents the smooth main effect of \(x_2, \gamma_{x_1} \times (x_2 - 0.5) \) represents the smooth–linear interaction, and \(f^*_{12}(x_1,x_2) \) represents the smooth–smooth interaction. The overall main effect of \(x_2 \)

\[
f_2(x_2) = \beta \times (x_2 - 0.5) + f^*_2(x_2),
\]

and the overall interaction between \(x_1 \) and \(x_2 \)

\[
f_{12}(x_1,x_2) = \gamma_{x_1} \times (x_2 - 0.5) + f^*_{12}(x_1,x_2).
\]

It is obvious that \(f_2 \) and \(f_{12} \) are the results of combining averaging operators \(A^{(2)}_2 \) and \(A^{(2)}_2 \). One may look at the components in the overall
main effects and interactions to decide whether to include them in the model. The first three terms in (4.18) represent the mean curve among all levels of \(x_1 \), and the last three terms represent the departure from the mean curve. The simple ANCOVA (analysis of covariance) model with \(x_2 \) being modeled by a straight line is a special case of (4.18) with \(f_{x_2} = f_{x_2}^{ss} = 0 \). Thus, checking whether \(f_{x_2}^{ss} \) and \(f_{x_2}^{ss} \) are negligible provides a diagnostic tool for the ANCOVA model. Write \(\mathbb{R}^a = \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \) and \(W_2^{[0,1]} = \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \oplus \mathcal{H}_2^{(2)} \), where \(\mathcal{H}_0^{(1)} \) and \(\mathcal{H}_1^{(1)} \) are given in (4.5), \(\mathcal{H}_0^{(2)} = \{1\} \), \(\mathcal{H}_1^{(2)} = \{x_2 - 0.5\} \), and \(\mathcal{H}_2^{(2)} = \{f \in W_2^{[0,1]}, \int_0^1 f du = \int_0^1 f' du = 0\} \). Then, in terms of the model space, (4.18) decomposes

\[
\begin{align*}
\mathbb{R}^a \otimes W_2^2 &\left[0,1\right] \\
= & \left\{H_0^{(1)} \oplus H_1^{(1)} \right\} \oplus \left\{H_0^{(2)} \oplus H_1^{(2)} \oplus H_2^{(2)} \right\} \\
= & \left\{H_0^{(1)} \otimes H_0^{(2)} \right\} \oplus \left\{H_0^{(1)} \otimes H_1^{(2)} \right\} \oplus \left\{H_0^{(1)} \otimes H_2^{(2)} \right\} \\
& + \left\{H_1^{(1)} \otimes H_0^{(2)} \right\} \oplus \left\{H_1^{(1)} \otimes H_1^{(2)} \right\} \oplus \left\{H_1^{(1)} \otimes H_2^{(2)} \right\} \\
\equiv & \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \mathcal{H}^2 \oplus \mathcal{H}^3 \oplus \mathcal{H}^4,
\end{align*}
\]

where \(\mathcal{H}^0 = \left\{H_0^{(1)} \otimes H_0^{(2)} \right\} \oplus \left\{H_0^{(1)} \otimes H_1^{(2)} \right\}, \mathcal{H}^1 = \mathcal{H}_0^{(1)} \otimes \mathcal{H}_2^{(2)}, \mathcal{H}^2 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)}, \mathcal{H}^3 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \), and \(\mathcal{H}^4 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_2^{(2)} \). It is easy to see that \(\mathcal{H}^0 \) is a two-dimensional space with basis functions \(\phi_1(x) = 1 \), and \(\phi_2(x) = x_2 - 0.5 \). RKs of \(\mathcal{H}^1, \mathcal{H}^2, \mathcal{H}^3, \) and \(\mathcal{H}^4 \) can be calculated from RKs of \(\mathcal{H}_0^{(1)} \) and \(\mathcal{H}_1^{(1)} \) given in (4.6) and the RKs of \(\mathcal{H}_0^{(2)} \), \(\mathcal{H}_1^{(2)} \), and \(\mathcal{H}_2^{(2)} \) given in Table 2.2.

4.4.3 Decomposition of \(W_2^{m_1[0,1]} \otimes W_2^{m_2[0,1]} \)

Suppose both \(x_1 \) and \(x_2 \) are continuous variables in \([0,1]\). \(W_2^{m}[0,1] \) is a natural model space for both effects of \(x_1 \) and \(x_2 \). Therefore, we consider the tensor product space \(W_2^{m_1[0,1]} \otimes W_2^{m_2[0,1]} \). For simplicity, we will derive SS ANOVA decompositions for combinations \(m_1 = m_2 = 1 \) and \(m_1 = m_2 = 2 \) only. SS ANOVA decompositions for other combinations of \(m_1 \) and \(m_2 \) can be derived similarly.

Consider the tensor product space \(W_2^{m_1[0,1]} \otimes W_2^{m_2[0,1]} \) first. Define two averaging operators as

\[
\mathcal{A}_1^{(k)} f = \int_0^1 f dx_k, \quad k = 1, 2,
\]

where \(\mathcal{A}_1^{(k)} \) extracts the constant term out of all possible functions of
\[x_k. \] Let \(A_2^{(k)} = I - A_1^{(k)} \) for \(k = 1, 2 \). Then

\[
\begin{align*}
 f &= \{ A_1^{(1)} + A_2^{(1)} \} \{ A_1^{(2)} + A_2^{(2)} \} f \\
 &= A_1^{(1)} A_1^{(2)} f + A_2^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_2^{(1)} A_2^{(2)} f \\
 &\triangleq \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2). \quad (4.20)
\end{align*}
\]

Obviously, (4.20) is a natural extension of the classical two-way ANOVA decomposition (4.14) from the product of two discrete domains to the product of two continuous domains. Components \(\mu \), \(f_1(x_1) \), \(f_2(x_2) \), and \(f_{12}(x_1, x_2) \) represent the overall mean, the main effect of \(x_1 \), the main effect of \(x_2 \), and the interaction between \(x_1 \) and \(x_2 \), respectively. In terms of the model space, (4.20) decomposes

\[
\begin{align*}
 W_2^1[0, 1] \otimes W_2^2[0, 1] \\
 &= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \right\} \otimes \left\{ \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \right\} \\
 &= \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \\
 &\triangleq \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3,
\end{align*}
\]

where \(\mathcal{H}_0^{(k)} = \{1\} \) and \(\mathcal{H}_1^{(k)} = \{ f \in W_2^1[0, 1] : \int_0^1 f \, dx_k = 0 \} \) for \(k = 1, 2 \), \(\mathcal{H}_0 = \mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)} \), \(\mathcal{H}_1 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)} \), \(\mathcal{H}_2 = \mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)} \), and \(\mathcal{H}_3 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \). \(\mathcal{H}_0 \) is an one-dimensional space with basis \(\phi(x) = 1 \). The RKs of \(\mathcal{H}_1 \), \(\mathcal{H}_2 \), and \(\mathcal{H}_3 \) can be calculated from RKs of \(\mathcal{H}_0^{(k)} \) and \(\mathcal{H}_1^{(k)} \) given in Table 2.2.

Now suppose we want to model both \(x_1 \) and \(x_2 \) using cubic splines. That is, we consider the tensor product space \(W_2^2[0, 1] \otimes W_2^2[0, 1] \). Define four averaging operators

\[
\begin{align*}
 A_1^{(k)} f &= \int_0^1 f \, dx_k, \\
 A_2^{(k)} f &= \left(\int_0^1 f' \, dx_k \right) (x_k - 0.5), \quad k = 1, 2,
\end{align*}
\]

where \(A_1^{(1)} \) and \(A_1^{(2)} \) extract the constant function out of all possible functions for each variable, and \(A_2^{(1)} \) and \(A_2^{(2)} \) extract the linear function
for each variable. Let $A_1^{(k)} = I - A_1^{(k)} - A_2^{(k)}$ for $k = 1, 2$. Then

$$f = \left\{ A_1^{(1)} + A_2^{(1)} + A_3^{(1)} \right\} \left\{ A_1^{(2)} + A_2^{(2)} + A_3^{(2)} \right\} f$$

$$= A_1^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_1^{(1)} A_3^{(2)} f$$

$$+ A_2^{(1)} A_1^{(2)} f + A_2^{(1)} A_2^{(2)} f + A_2^{(1)} A_3^{(2)} f$$

$$+ A_3^{(1)} A_1^{(2)} f + A_3^{(1)} A_2^{(2)} f + A_3^{(1)} A_3^{(2)} f$$

$$= \mu + \beta_1 \times (x_1 - 0.5) + f_1^{(1)}(x_2)$$

$$+ \beta_2 \times (x_2 - 0.5) + f_2^{(1)}(x_1, x_2)$$

$$+ f_1^{(2)}(x_1) + f_2^{(2)}(x_1, x_2) + f_1^{(3)}(x_1, x_2),$$

(4.21)

where μ represents the overall mean; $\beta_1 \times (x_1 - 0.5)$ and $\beta_2 \times (x_2 - 0.5)$ represent the linear main effects of x_1 and x_2; $f_1^{(1)}(x_1)$ and $f_2^{(1)}(x_2)$ represent the smooth main effect of x_1 and x_2; $\beta_3 \times (x_1 - 0.5) \times (x_2 - 0.5)$, $f_1^{(1)}(x_1, x_2)$, $f_2^{(1)}(x_1, x_2)$, and $f_1^{(3)}(x_1, x_2)$ represent the linear–linear, linear–smooth, smooth–linear, and smooth–smooth interactions between x_1 and x_2. The overall main effect of x_k

$$f_k(x_k) = \beta_k \times (x_k - 0.5) + f_k^{(1)}(x_k), \quad k = 1, 2,$$

and the overall interaction between x_1 and x_2

$$f_{12}(x_1, x_2) = \beta_3 \times (x_1 - 0.5) \times (x_2 - 0.5) + f_{12}^{(1)}(x_1, x_2) + f_{12}^{(2)}(x_1, x_2)$$

$$+ f_{12}^{(3)}(x_1, x_2).$$

The simple regression model with both x_1 and x_2 being modeled by straight lines is a special case of (4.21) with $f_1^{(1)} = f_2^{(1)} = f_{12}^{(1)} = f_{12}^{(2)} = f_{12}^{(3)} = 0$.

In terms of the model space, (4.21) decomposes

$$W_2[0, 1] \otimes W_2[0, 1]$$

$$= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \oplus \mathcal{H}_2^{(1)} \right\} \oplus \left\{ \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \oplus \mathcal{H}_2^{(2)} \right\}$$

$$= \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_2^{(1)} \otimes \mathcal{H}_2^{(2)} \right\}$$

$$+ \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(1)} \right\} \oplus \left\{ \mathcal{H}_0^{(2)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \right\}$$

$$+ \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_2^{(1)} \right\} \oplus \left\{ \mathcal{H}_0^{(2)} \otimes \mathcal{H}_2^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_2^{(2)} \right\}$$

$$\Delta \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \oplus \mathcal{H}_4 \oplus \mathcal{H}_5,$$

where $\mathcal{H}_0^{(k)} = \{1\}$, $\mathcal{H}_1^{(k)} = \{x_k - 0.5\}$, and $\mathcal{H}_2^{(k)} = \{f \in W_2[0, 1] : \int_0^1 f \, dx_k = \int_0^1 f' \, dx_k = 0\}$ for $k = 1, 2$, $\mathcal{H}_0 = \{\mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)}\} \oplus \{\mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)}\} \oplus$
The decompositions
\[\{ H_0^{(1)} \otimes H_1^{(2)} \} \oplus \{ H_1^{(1)} \otimes H_1^{(2)} \}, \quad H_4 = H_2^{(1)} \otimes H_0^{(2)}, \quad H_5 = H_2^{(1)} \otimes H_2^{(2)} \]

are four-dimensional spaces with basis functions defined by specific values of \(x_1, x_2 \). The RKs of \(H_1, H_2, H_3 \) and \(H_5 \) can be calculated from RKs of \(H_0^{(k)}, H_1^{(k)} \), and \(H_2^{(k)} \) given in Table 2.2.

4.4.4 Decomposition of \(\mathbb{R}^a \otimes W_2^m \) (per)

Suppose \(x_1 \) is a discrete variable with \(a \) levels, and \(x_2 \) is a continuous variable in \([0,1]\). In addition, suppose that \(f \) is a periodic function of \(x_2 \). A natural model space for \(x_1 \) is \(\mathbb{R}^a \), and a natural model space for \(x_2 \) is \(W_2^m \) (per). Therefore, we consider the tensor product space \(\mathbb{R}^a \otimes W_2^m \) (per).

Define two averaging operators \(A_1^{(1)} \) and \(A_2^{(2)} \) as

\[A_1^{(1)} f = \frac{1}{a} \sum_{x_1=1}^{a} f, \]
\[A_2^{(2)} f = \frac{1}{2} \int_{0}^{1} f dx_2. \]

Let \(A_2^{(1)} = I - A_1^{(1)} \) and \(A_2^{(2)} = I - A_1^{(2)} \). Then

\[f = \{ A_1^{(1)} + A_2^{(1)} \} \{ A_1^{(2)} + A_2^{(2)} \} f \]
\[= A_1^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_1^{(1)} A_2^{(1)} f + A_1^{(2)} A_2^{(2)} f \]
\[\triangleq \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2), \ (4.22) \]

where \(\mu \) represents the overall mean, \(f_1(x_1) \) represents the main effect of \(x_1 \), \(f_2(x_2) \) represents the main effect of \(x_2 \), and \(f_{12}(x_1, x_2) \) represents the interaction between \(x_1 \) and \(x_2 \). Write \(\mathbb{R}^a = H_0^{(1)} \oplus H_1^{(1)} \) and \(W_2^m \) (per) = \(H_0^{(2)} \oplus H_1^{(2)} \), where \(H_0^{(1)} \) and \(H_1^{(1)} \) are given in (4.5), \(H_0^{(2)} = \{ 1 \} \), and \(H_1^{(2)} = \{ f \in W_2^m \) (per) : \(\int_{1}^{a} f du = 0 \} \). Then, in terms of the model space, (4.22) decomposes

\[\mathbb{R}^a \otimes W_2^m \) (per)
\[= \{ H_0^{(1)} \oplus H_1^{(1)} \} \oplus \{ H_0^{(2)} \oplus H_1^{(2)} \}
\[= \{ H_0^{(1)} \oplus H_0^{(2)} \} \oplus \{ H_1^{(1)} \oplus H_1^{(2)} \} \oplus \{ H_0^{(1)} \oplus H_1^{(2)} \}
\[\triangleq H_0 \oplus H_1 \oplus H_2 \oplus H_3, \]
where $\mathcal{H}^0 = \mathcal{H}_0(1) \otimes \mathcal{H}_0(2)$, $\mathcal{H}^1 = \mathcal{H}_1(1) \otimes \mathcal{H}_0(2)$, $\mathcal{H}^2 = \mathcal{H}_0(1) \otimes \mathcal{H}_1(2)$, and $\mathcal{H}^3 = \mathcal{H}_1(1) \otimes \mathcal{H}_1(2)$. \mathcal{H}^0 is an one-dimensional space with basis function $\phi(x) = 1$. The RKs of \mathcal{H}^2, \mathcal{H}^2, and \mathcal{H}^3 can be calculated from RKs of $\mathcal{H}_0(1)$ and $\mathcal{H}_1(1)$ given in (4.6) and RKs of $\mathcal{H}_0(2)$ and $\mathcal{H}_1(2)$ given in (2.33).

4.4.5 Decomposition of $W_2^{m_1}(\text{per}) \otimes W_2^{m_2}[0, 1]

Suppose both x_1 and x_2 are continuous variables in $[0, 1]$. In addition, suppose f is a periodic function of x_1. A natural model space for x_1 is $W_2^{m_1}(\text{per})$, and a natural model space for x_2 is $W_2^{m_2}[0, 1]$. Therefore, we consider the tensor product space $W_2^{m_1}(\text{per}) \otimes W_2^{m_2}[0, 1]$. For simplicity, we derive the SS ANOVA decomposition for $m_2 = 2$ only.

Define three averaging operators

\begin{align*}
A_1^{(1)} f &= \int_0^1 f dx_1, \\
A_1^{(2)} f &= \int_0^1 f dx_2, \\
A_2^{(2)} f &= \left(\int_0^1 f dx_2 \right) (x_2 - 0.5).
\end{align*}

Let $A_2^{(1)} = I - A_1^{(1)}$ and $A_3^{(2)} = I - A_1^{(2)} - A_2^{(2)}$. Then

\begin{align*}
f &= \left\{ A_1^{(1)} + A_2^{(1)} \right\} \left\{ A_1^{(2)} + A_2^{(2)} + A_3^{(2)} \right\} f \\
&= A_1^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_1^{(1)} A_3^{(2)} f \\
&\quad + A_2^{(1)} A_1^{(2)} f + A_2^{(1)} A_2^{(2)} f + A_2^{(1)} A_3^{(2)} f \\
&\overset{\Delta}{=} \mu + \beta \times (x_2 - 0.5) + f_2(x_2) \\
&\quad + f_1(x_1) + f_{12}^{st}(x_1, x_2) + f_{12}^{ss}(x_1, x_2),
\end{align*}

where μ represents the overall mean, $f_1(x_1)$ represents the main effect of x_1, $\beta \times (x_2 - 0.5)$ and $f_2(x_2)$ represent the linear and smooth main effects of x_2, $f_{12}^{st}(x_1, x_2)$ and $f_{12}^{ss}(x_1, x_2)$ represent the smooth–linear and smooth–smooth interactions. The overall main effect of x_2

\begin{align*}
f_2(x_2) &= \beta \times (x_2 - 0.5) + f_2(x_2),
\end{align*}

and the overall interaction between x_1 and x_2

\begin{align*}
f_{12}(x_1, x_2) &= f_{12}^{st}(x_1, x_2) + f_{12}^{ss}(x_1, x_2).
\end{align*}
Write $W_2^{m_1}(\text{per}) = \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)}$ and $W_2^2[0,1] = \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \oplus \mathcal{H}_2^{(2)}$, where $\mathcal{H}_0^{(1)} = \{1\}$, $\mathcal{H}_1^{(1)} = \{f \in W_2^{m_1}(\text{per}) : \int_0^1 f du = 0\}$, $\mathcal{H}_0^{(2)} = \{1\}$, $\mathcal{H}_1^{(2)} = \{x_2 - 0.5\}$, and $\mathcal{H}_2^{(2)} = \{f \in W_2^2[0,1] : \int_0^1 f du = \int_0^1 f'du = 0\}$. Then, in terms of the model space, (4.23) decomposes

\[
W_2^{m_1}(\text{per}) \otimes W_2^2[0,1]
= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \right\} \otimes \left\{ \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \oplus \mathcal{H}_2^{(2)} \right\}
= \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_2^{(2)} \right\}
\oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_2^{(2)} \right\}
\triangleq \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \oplus \mathcal{H}_4,
\]

where $\mathcal{H}_0 = \{\mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)}\} \oplus \{\mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)}\}$, $\mathcal{H}_1 = \mathcal{H}_0^{(1)} \otimes \mathcal{H}_2^{(2)}$, $\mathcal{H}_2 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)}$, $\mathcal{H}_3 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)}$, and $\mathcal{H}_4 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_2^{(2)}$. \mathcal{H}_0 is a two-dimensional space with basis functions $\phi(x) = 1$ and $\phi(x) = x_2 - 0.5$.

The RKs of \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, and \mathcal{H}_4 can be calculated from the RKs $\mathcal{H}_0^{(1)}$ and $\mathcal{H}_1^{(1)}$ given in (2.33) and the RKs of $\mathcal{H}_0^{(2)}$, $\mathcal{H}_1^{(2)}$, and $\mathcal{H}_2^{(2)}$ given in Table 2.2.

4.4.6 Decomposition of $W_2^2(\mathbb{R}^2) \otimes W_2^m(\text{per})$

Suppose $x_1 = (x_{11}, x_{12})$ is a bivariate continuous variable in \mathbb{R}^2, and x_2 is a continuous variable in $[0,1]$. In addition, suppose that f is a periodic function of x_2. We consider the tensor product space $W_2^2(\mathbb{R}^2) \otimes W_2^m(\text{per})$ for the joint regression function $f(x_1, x_2)$.

Let $\phi_1(x_1) = 1$, $\phi_2(x_1) = x_{11}$, and $\phi_3(x_1) = x_{12}$ be polynomials of total degree less than 2. Define three averaging operators

\[A_1^{(1)} f = \sum_{j=1}^J w_j f(u_j),\]
\[A_2^{(1)} f = \sum_{j=1}^J w_j f(u_j) (\bar{\phi}_2(u_j) \bar{\phi}_2 + \bar{\phi}_3(u_j) \bar{\phi}_3),\]
\[A_1^{(2)} f = \int_0^1 f dx_2,\]

where u_j are fixed points in \mathbb{R}^2, w_j are fixed positive weights such that $\sum_{j=1}^J w_j = 1$, $\bar{\phi}_1 = 1$, and $\bar{\phi}_2$ and $\bar{\phi}_3$ are orthonormal bases based on
the norm (2.41). Let $A_1^{(1)} = I - A_1^{(1)} - A_2^{(1)}$ and $A_2^{(2)} = I - A_1^{(2)}$. Then
\[
f = \left\{ A_1^{(1)} + A_2^{(1)} + A_1^{(2)} \right\} \left\{ A_1^{(2)} + A_2^{(2)} \right\} f
= A_1^{(1)} A_1^{(2)} f + A_2^{(1)} A_2^{(2)} f + A_1^{(1)} A_2^{(2)} f
+ A_1^{(1)} A_2^{(1)} f + A_2^{(2)} A_1^{(2)} f + A_1^{(1)} A_1^{(2)} f
= \mu + \beta_1 \tilde{\phi}_2(x_1) + \beta_2 \tilde{\phi}_3(x_1)
+ f_1^s(x_1) + f_2(x_2) + f_{12}^s(x_1, x_2) + f_{12}^s(x_1, x_2),
\]
where μ is the overall mean, $\beta_1 \tilde{\phi}_2(x_1) + \beta_2 \tilde{\phi}_3(x_1)$ is the linear main effect of x_1, $f_1^s(x_1)$ is the smooth main effect of x_1, $f_2(x_2)$ is the main effect of x_2, $f_{12}^s(x_1, x_2)$ is the linear–smooth interaction, and $f_{12}^s(x_1, x_2)$ is smooth–smooth interaction. The overall main effect of x_1
\[
f_1(x_1) = \beta_1 \tilde{\phi}_2(x_1) + \beta_2 \tilde{\phi}_3(x_1) + f_1^s(x_1),
\]
and the overall interaction
\[
f_{12}(x_1, x_2) = f_{12}^s(x_1, x_2) + f_{12}^s(x_1, x_2).
\]
Write $W_2^2(\mathbb{R}^2) = \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \oplus \mathcal{H}_2^{(1)}$ and $W_2^n(\text{per}) = \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)}$, where $\mathcal{H}_0^{(1)} = \{1\}, \mathcal{H}_1^{(1)} = \{\bar{\phi}_2, \bar{\phi}_3\}, \mathcal{H}_2^{(1)} = \{f \in W_2^2(\mathbb{R}^2) : J_2(f) = 0\}$, $\mathcal{H}_0^{(2)} = \{1\}$, and $\mathcal{H}_1^{(2)} = \{f \in W_2^n(\text{per}) : \int_0^1 f du = 0\}$. Then, in terms of the model space, (4.24) decomposes
\[
W_2^2(\mathbb{R}^2) \otimes W_2^n(\text{per})
= \left\{ \mathcal{H}_0^{(1)} \oplus \mathcal{H}_1^{(1)} \oplus \mathcal{H}_2^{(1)} \right\} \otimes \left\{ \mathcal{H}_0^{(2)} \oplus \mathcal{H}_1^{(2)} \right\}
= \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)} \right\} \oplus \left\{ \mathcal{H}_2^{(1)} \otimes \mathcal{H}_0^{(2)} \right\}
\oplus \left\{ \mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)} \right\} \oplus \left\{ \mathcal{H}_2^{(1)} \otimes \mathcal{H}_1^{(2)} \right\}
\oplus \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \oplus \mathcal{H}_4,
\]
where $\mathcal{H}_0 = \{\mathcal{H}_0^{(1)} \otimes \mathcal{H}_0^{(2)}\} \oplus \{\mathcal{H}_1^{(1)} \otimes \mathcal{H}_0^{(2)}\}$, $\mathcal{H}_1 = \{\mathcal{H}_2^{(1)} \otimes \mathcal{H}_0^{(2)}\}$, $\mathcal{H}_2 = \{\mathcal{H}_0^{(1)} \otimes \mathcal{H}_1^{(2)}\}$, $\mathcal{H}_3 = \{\mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)}\}$, and $\mathcal{H}_4 = \{\mathcal{H}_2^{(1)} \otimes \mathcal{H}_1^{(2)}\}$. The basis functions of \mathcal{H}_0 are 1, $\bar{\phi}_2$, and $\bar{\phi}_3$. The RKs of $\mathcal{H}_0^{(1)}$ and $\mathcal{H}_1^{(1)}$ are 1 and $\bar{\phi}_2(x_1) \bar{\phi}_2(x_1) + \bar{\phi}_3(x_1) \bar{\phi}_3(x_1)$, respectively. The RK of $\mathcal{H}_2^{(1)}$ is given in (2.42). The RKs of $\mathcal{H}_0^{(2)}$ and $\mathcal{H}_1^{(2)}$ are given in (2.33). The RKs of $\mathcal{H}_2^{(2)}$, $\mathcal{H}_3^{(2)}$, and $\mathcal{H}_4^{(2)}$ can be calculated as products of the RKs of the involved marginal spaces.
4.5 General SS ANOVA Decomposition

Consider the general case with \(d \) independent variables \(x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, \ldots, x_d \in \mathcal{X}_d \), and the tensor product space \(\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} \otimes \cdots \otimes \mathcal{H}^{(d)} \) on \(\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_d \). For \(f \) as a function of \(x_k \), assume the following one-way decomposition as in (4.3),

\[
 f = A_1^{(k)} f + \cdots + A_{r_k}^{(k)} f, \quad 1 \leq k \leq d, \tag{4.26}
\]

where \(A_1^{(k)} + \cdots + A_{r_k}^{(k)} = I \). Then, for the joint function,

\[
 f = \left\{ A_1^{(1)} + \cdots + A_{r_1}^{(1)} \right\} \cdots \left\{ A_1^{(d)} + \cdots + A_{r_d}^{(d)} \right\} f
 = \sum_{j_1=1}^{r_1} \cdots \sum_{j_d=1}^{r_d} A_{j_1}^{(1)} \cdots A_{j_d}^{(d)} f. \tag{4.27}
\]

The above decomposition of the function \(f \) is referred to as the SS ANOVA decomposition.

Denote

\[
 \mathcal{H}^{(k)} = \mathcal{H}_{(j_1)}^{(k)} \oplus \cdots \oplus \mathcal{H}_{(r_k)}^{(k)}, \quad k = 1, 2, \ldots, d
\]

as the one-way decomposition to \(\mathcal{H}^{(k)} \) associated with (4.26). Then, (4.27) decomposes the tensor product space

\[
 \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} \otimes \cdots \otimes \mathcal{H}^{(d)}
 = \left\{ \mathcal{H}_{(j_1)}^{(1)} \oplus \cdots \oplus \mathcal{H}_{(r_1)}^{(1)} \right\} \otimes \cdots \otimes \left\{ \mathcal{H}_{(j_1)}^{(d)} \oplus \cdots \oplus \mathcal{H}_{(r_d)}^{(d)} \right\}
 = \sum_{j_1=1}^{r_1} \cdots \sum_{j_d=1}^{r_d} \mathcal{H}_{(j_1)}^{(1)} \otimes \cdots \otimes \mathcal{H}_{(j_d)}^{(d)}. \tag{4.28}
\]

The RK of \(\mathcal{H}_{(j_1)}^{(1)} \otimes \cdots \otimes \mathcal{H}_{(j_a)}^{(d)} \) equals \(\prod_{k=1}^{d} R_{(j_k)}^{(k)} \), where \(R_{(j_k)}^{(k)} \) is the RK of \(\mathcal{H}_{(j_k)}^{(k)} \) for \(k = 1, \ldots, d \).

Consider the special case when \(r_k = 2 \) for all \(k = 1, \ldots, d \). Assume that \(A_1^{(k)} f \) is independent of \(x_k \), or equivalently, \(\mathcal{H}_{(1)} = \{1\} \). Then the decomposition (4.27) can be written as

\[
 f = \sum_{B \subseteq \{1, \ldots, d\}} \left\{ \prod_{k \in B} A_2^{(k)} \prod_{k \in B^c} A_1^{(k)} f \right\}
 = \mu + \sum_{k=1}^{d} f_k(x_k) + \sum_{k<l} f_{kl}(x_k, x_l) + \cdots + f_{1 \cdots d}(x_1, \ldots, x_d), \tag{4.29}
\]
where μ represents the grand mean, $f_k(x_k)$ represents the main effect of x_k, $f_{kl}(x_k, x_l)$ represents the two-way interaction between x_k and x_l, and the remaining terms represent higher-order interactions.

For general r_k, assuming $A^{(k)}_1 f$ is independent of x_k, the decomposition (4.29) can be derived by combining operators $A^{(k)}_2$, \ldots, $A^{(k)}_{r_k}$ into one averaging operator $\tilde{A}^{(k)}_2 = A^{(k)}_2 + \cdots + A^{(k)}_{r_k}$. Therefore, decomposition (4.29) combines components in (4.27) and reorganizes them into overall main effects and interactions.

When all x_k are discrete variables, the SS ANOVA decomposition (4.27) leads to the classical d-way ANOVA model. Therefore, SS ANOVA decompositions are natural extensions of classical ANOVA decompositions from discrete domains to general domains and from finite dimensional spaces to infinite dimensional spaces. They decompose tensor product RKHS’s into meaningful subspaces. As the classical ANOVA decompositions, SS ANOVA decompositions lead to hierarchical structures that are useful for model selection and interpretation.

Different SS ANOVA decompositions can be derived based on different averaging operators (or equivalently different decompositions of marginal spaces). Therefore, the SS ANOVA decomposition should be regarded as a general prescription for building multivariate nonparametric models rather than some fixed models. They can also be used to construct submodels for components in more complicated models.

4.6 SS ANOVA Models and Estimation

The curse of dimensionality is a major problem in dealing with multivariate functions. From the SS ANOVA decomposition in (4.27), it is clear that the number of components in the decomposition increases exponentially as the dimension d increases. To overcome this problem, as in classical ANOVA, high-order interactions are often deleted from the model space.

A model containing any subset of components in the SS ANOVA decomposition (4.27) is referred to as an SS ANOVA model. The well-known additive model is a special case that contains main effects only (Hastie and Tibshirani 1990). Given an SS ANOVA model, we can re-group and write the model space as

$$\mathcal{M} = \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \mathcal{H}^q,$$

(4.30)

where \mathcal{H}^0 is a finite dimensional space collecting all functions that are
not going to be penalized, and $\mathcal{H}^1, \ldots, \mathcal{H}^q$ are orthogonal RKHS's with RKs R^j for $j = 1, \ldots, q$. The RK R^j equals the product of RKs of the subspaces involved in the tensor product space \mathcal{H}^j. The norms on the composite \mathcal{H}^j are the tensor product norms induced by the norms on the component subspaces. Details about the induced norm can be found in Aronszajn (1950), and an illustrative example can be found in Chapter 10 of Wahba (1990). Note that

$$\|f\|_2^2 = \|P_0 f\|_2^2 + \sum_{j=1}^q \|P_j f\|_2^2,$$

where P_j is the orthogonal projector in M onto \mathcal{H}^j.

For generality, suppose observations are generated by

$$y_i = \mathcal{L}_i f + \epsilon_i, \quad i = 1, \ldots, n,$$

where f is a multivariate function in the model space M defined in (4.30), \mathcal{L}_i are bounded linear functionals, and ϵ_i are zero-mean independent random errors with a common variance σ^2.

The PLS estimate of f is the solution to

$$\min_{f \in M} \left\{ \frac{1}{n} \sum_{i=1}^n (y_i - \mathcal{L}_i f)^2 + \sum_{j=1}^q \lambda_j \|P_j f\|_2^2 \right\}. \quad (4.32)$$

Different smoothing parameters λ_j allow different penalties for each component. For fixed smoothing parameters, the following rescaling allows us to derive and compute the solution to (4.32) using results in Chapter 2. Let $\mathcal{H}^*_1 = \oplus_{j=1}^q \mathcal{H}^j$. Then, for any $f \in \mathcal{H}^*_1$,

$$f(x) = f_1(x) + \cdots + f_q(x), \quad f_j \in \mathcal{H}^j, \quad j = 1, \ldots, q.$$

Write $\lambda_j \triangleq \lambda/\theta_j$. The set of parameters λ and θ_j are overparameterized. The penalty is controlled by the ratio λ/θ_j, that is, λ_j. Define the inner product in \mathcal{H}^*_1 as

$$(f, g)_* = \sum_{j=1}^q \theta_j^{-1} (f_j, g_j). \quad (4.33)$$

Then, $\|f\|_*^2 = \sum_{j=1}^q \theta_j^{-1} \|f_j\|^2$. Let $R^*_1 = \sum_{j=1}^q \theta_j R^j$. Since

$$(R^*_1(x, \cdot), f(\cdot))_* = \sum_{j=1}^q \theta_j^{-1} (R_j \mathcal{H}^j(x, \cdot), f_j(\cdot)) = \sum_{j=1}^q f_j(x) = f(x),$$

then R^*_1 is the RK of \mathcal{H}^*_1 with the inner product (4.33).

Let $P^*_1 = \sum_{j=1}^q P_j$ be the orthogonal projection in M onto \mathcal{H}^*_1. Then the minimization problem (4.32) is reduced to

$$\min_{f \in M} \left\{ \frac{1}{n} \sum_{i=1}^n (y_i - \mathcal{L}_i f)^2 + \lambda \|P^*_1 f\|_*^2 \right\}. \quad (4.34)$$
The PLS (4.34) has the same form as (2.11), with \mathcal{H}_1 and P_1 being replaced by \mathcal{H}_1^* and P_1^*, respectively. Therefore, results in Section 2.4 apply. Specifically, let $\theta = (\theta_1, \ldots, \theta_q)$, ϕ_1, \ldots, ϕ_p be basis functions of \mathcal{H}^0, and

$$
T = \{\mathcal{L}_i\phi_{\nu}\}_{i=1, \nu=1}^n, \\
\Sigma_k = \{\mathcal{L}_i\mathcal{L}_j R^k\}_{i,j=1}^n, \quad k = 1, \ldots, q, \\
\Sigma \theta = \theta_1 \Sigma_1 + \cdots + \theta_q \Sigma_q.
$$

(4.35)

Applying the Kimeldorf–Wahba representer theorem and noting that $\xi_i(x) = \mathcal{L}_i(z)R_1^* (x, z) = \sum_{j=1}^q \theta_j \mathcal{L}_i(z)R_j(x, z)$, the solution can be represented as

$$
\hat{f}(x) = \sum_{\nu=1}^p d_\nu \phi_{\nu}(x) + \sum_{i=1}^n c_i \sum_{j=1}^q \theta_j \mathcal{L}_i(z)R_j(x, z),
$$

(4.36)

where $d = (d_1, \ldots, d_p)^T$ and $c = (c_1, \ldots, c_n)^T$ are solutions to

$$
(\Sigma \theta + n\lambda I)c + Td = y, \\
T^T c = 0.
$$

(4.37)

Equations in (4.37) have the same form as those in (2.21), with Σ being replaced by $\Sigma \theta$. Therefore, the coefficients c and d can be computed similarly.

Let $\mathbf{f} = (\mathcal{L}_1 \hat{f}, \ldots, \mathcal{L}_n \hat{f})^T$ be the vector of fitted values. Let the QR decomposition of T be

$$
T = (Q_1 Q_2) \begin{pmatrix} R \\ 0 \end{pmatrix}
$$

and $M = \Sigma \theta + n\lambda I$. Then

$$
\hat{f} = H(\lambda, \theta) y
$$

where

$$
H(\lambda, \theta) = I - n \lambda Q_2(Q_2^T M Q_2)^{-1} Q_2^T
$$

(4.38)

is the hat matrix.

The ssr function in the assist package can be used to fit the SS ANOVA model (4.31). As in Chapter 2, observations y and T matrix can be specified using the argument formula. Instead of a single matrix
we now have multiple matrices Σ_j for $j = 1, \ldots, q$. They are specified as elements of a list for the argument r_k. Examples are given in Section 4.9.

Sometimes it may be desirable to use the same smoothing parameter for a subset of penalties in the PLS (4.32). For illustration, suppose we want to solve the PLS (4.32) with $\lambda_{q-1} = \lambda_q$. This can be achieved by combining \mathcal{H}^{q-1} and \mathcal{H}^q into one space, say $\tilde{\mathcal{H}}^{q-1}$, and fit the SS ANOVA model with model space $\mathcal{M} = \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \tilde{\mathcal{H}}^{q-1}$. The RK of $\tilde{\mathcal{H}}^{q-1}$ is $\tilde{R}^{q-1} = R^{q-1} + R^q$. Then the model can be fitted by a call to the \texttt{ssr} function with the combined RK. The same approach can be applied to multiple subsets such that penalties in each subset share the same smoothing parameter. When appropriate, this approach can greatly reduce the computation time when q is large. An example will be given in Section 4.9.1.

4.7 Selection of Smoothing Parameters

The set of parameters λ and θ are overparameterized. Therefore, even though the criteria in this section are presented as functions of λ and θ, they should be understood as functions of $(\lambda_1, \ldots, \lambda_q)$, where $\lambda_j = \lambda / \theta_j$.

Define mean squared error (MSE) as

$$
\text{MSE}(\lambda, \theta) = E \left(\frac{1}{n} ||\hat{f} - f||^2 \right),
$$

where $f = (\mathcal{L}_1 f, \ldots, \mathcal{L}_n f)^T$. Following the same arguments as in Section 3.3, it is easy to check that the function

$$
\text{UBR}(\lambda, \theta) \triangleq \frac{1}{n} ||(I - H(\lambda, \theta))y||^2 + \frac{2\sigma^2}{n} \text{tr}H(\lambda, \theta)
$$

is an unbiased estimate of $\text{MSE}(\lambda, \theta) + \sigma^2$. The function $\text{UBR}(\lambda, \theta)$ is referred to as the unbiased risk (UBR) criterion and the minimizer of $\text{UBR}(\lambda, \theta)$ is referred to as the UBR estimate of (λ, θ). The UBR method requires an estimate of error variance σ^2. Few methods are available for estimating σ^2 in a multivariate nonparametric model without needing to estimate the function f first. When the product domain \mathcal{X} is equipped with a norm, the method in Tong and Wang (2005) may be used to estimate σ^2.
A parallel derivation as in Section 3.4 leads to the following extension of the GCV criterion

$$GCV(\lambda, \theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} (L_i \hat{f} - y_i)^2 \left\{ \frac{1}{n} \text{tr}(I - H(\lambda, \theta)) \right\}^{-\frac{1}{2}}. \quad (4.41)$$

The GCV estimate of (λ, θ) is the minimizer of $GCV(\lambda, \theta)$.

We now construct a Bayes model for the SS ANOVA model (4.31). Assume a prior for f as

$$F(x) = \sum_{\nu=1}^{p} \zeta_\nu \phi_\nu(x) + \sqrt{\theta} \sum_{j=1}^{q} U_j(x), \quad (4.42)$$

where $\zeta_\nu \sim \text{N}(0, \kappa)$; $U_j(x)$ are independent, zero-mean Gaussian stochastic processes with covariance function $R_j(x, z)$; ζ_ν and $U_j(x)$ are mutually independent; and κ and δ are positive constants. Suppose observations are generated from

$$y_i = L_i F + \epsilon_i, \quad i = 1, \ldots, n, \quad (4.43)$$

where $\epsilon_i \sim \text{N}(0, \sigma^2)$.

Let \mathcal{L}_0 be a bounded linear functional on \mathcal{M}. Let $\lambda = \sigma^2 / n\delta$. The same arguments in Section 3.6 hold when $M = \Sigma + n\lambda I$ is replaced by $M = \Sigma \theta + n\lambda I$ in this chapter. Therefore,

$$\lim_{\kappa \to \infty} \text{E}(\mathcal{L}_0 F | y) = \mathcal{L}_0 \hat{f}. \quad \text{(4.44)}$$

That is, the PLS estimate \hat{f} is a Bayes estimate. Furthermore, we have the following extension of the GML criterion:

$$\text{GML}(\lambda, \theta) \triangleq \frac{y^T (I - H(\lambda, \theta)) y}{|\text{det}^+((I - H(\lambda, \theta)))|^{\frac{1}{2}}}. \quad (4.44)$$

All three forms of LME models for the SSR model in Section 3.5 can be extended for the SS ANOVA model. We present the extension of (3.35) only. Let $\Sigma_k = Z_k Z_k^T$, where Z_k is an $n \times m_k$ matrix with $m_k = \text{rank}(\Sigma_k)$. It is not difficult to see that the GML criterion is the REML criterion based on the following linear mixed-effects model

$$y = T \zeta + \sum_{k=1}^{q} Z_k u_k + \epsilon, \quad (4.45)$$

where $\zeta = (\zeta_1, \ldots, \zeta_p)^T$ are deterministic parameters, u_k are mutually independent random effects, $u_k \sim \text{N}(0, \sigma^2 \theta_k I_{m_k} / n\lambda)$, $\epsilon \sim \text{N}(0, \sigma^2 I)$, and u_k are independent of ϵ. Details can be found in Chapter 9.
4.8 Confidence Intervals

Any function \(f \in \mathcal{M} \) can be represented as

\[
f = \sum_{\nu=1}^{p} f_{0\nu} + \sum_{j=1}^{q} f_{1j},
\]

where \(f_{0\nu} \in \text{span}\{\phi_{\nu}\} \) for \(\nu = 1, \ldots, p \), and \(f_{1j} \in \mathcal{H}_j \) for \(j = 1, \ldots, q \).

Our goal is to construct Bayesian confidence intervals for

\[
\mathcal{L}_0 f \gamma = \sum_{\nu=1}^{p} \gamma_{\nu} \mathcal{L}_0 f_{0\nu} + \sum_{j=1}^{q} \gamma_{p+j} \mathcal{L}_0 f_{1j}
\]

for any bounded linear functional \(\mathcal{L}_0 \) and any \(\gamma = (\gamma_1, \ldots, \gamma_{p+q})^T \), where \(\gamma_k = 1 \) when the corresponding component in (4.46) is to be included and 0 otherwise.

Let \(F_{0\nu} = \zeta_{\nu} \phi_{\nu} \) for \(\nu = 1, \ldots, p \), and \(F_{1j} = \sqrt{\theta_j} U_j \) for \(j = 1, \ldots, q \). Let \(\mathcal{L}_0, \mathcal{L}_{01}, \text{and } \mathcal{L}_{02} \) be bounded linear functionals.

Posterior means and covariances

For \(\nu, \mu = 1, \ldots, p \) and \(j, k = 1, \ldots, q \), the posterior means are

\[
E(\mathcal{L}_0 F_{0\nu}|y) = (\mathcal{L}_0 \phi_{\nu}) e_{\nu}^T d,
\]

\[
E(\mathcal{L}_0 F_{1j}|y) = \theta_j (\mathcal{L}_0 \xi_j)^T c,
\]

and the posterior covariances are

\[
\delta^{-1} \text{Cov}(\mathcal{L}_{01} F_{0\nu}, \mathcal{L}_{02} F_{0\mu}|y) = (\mathcal{L}_{01} \phi_{\nu})(\mathcal{L}_{02} \phi_{\mu}) e_{\nu}^T A e_{\mu},
\]

\[
\delta^{-1} \text{Cov}(\mathcal{L}_{01} F_{0\nu}, \mathcal{L}_{02} F_{1j}|y) = -\theta_j (\mathcal{L}_{01} \phi_{\nu}) e_{\nu}^T B (\mathcal{L}_{02} \xi_j),
\]

\[
\delta^{-1} \text{Cov}(\mathcal{L}_{01} F_{1j}, \mathcal{L}_{02} F_{1k}|y) = \delta_{j,k} \theta_j \theta_k \mathcal{L}_{01} \mathcal{L}_{02} R^j - \theta_j \theta_k (\mathcal{L}_{01} \xi_j)^T C (\mathcal{L}_{02} \xi_k),
\]

where \(e_{\nu} \) is a vector of dimension \(p \) with the \(\nu \)th element being one and all other elements being zero, \(\delta_{j,k} \) is the Kronecker delta, \(c \) and \(d \) are solutions to (4.37), \(\mathcal{L} \xi_j = (\mathcal{L} \mathcal{L}_1 R^1, \ldots, \mathcal{L} \mathcal{L}_n R^n)^T \) for any well-defined \(\mathcal{L} \), \(M = \Sigma \theta + n \lambda I \), \(A = (T^T M^{-1} T)^{-1} \), \(B = AT^T M^{-1} \), and \(C = M^{-1}(I-B) \).

As in Section 3.8.1, even though not explicitly expressed, a diffuse prior is assumed for \(\zeta \) with \(\kappa \to \infty \). The first two equations in (4.48) state that the projections of \(\hat{f} \) on subspaces are the posterior means of the corresponding components in the Bayes model (4.42). The next
three equations in (4.49) can be used to compute posterior covariances of the spline estimates and their projections. Based on these posterior covariances, we construct Bayesian confidence intervals for the overall function \(f \) and its components in (4.46). Specifically, posterior mean and variance for \(\mathcal{L}_0 f_\gamma \) in (4.47) can be calculated using the formulae in (4.48) and (4.49). Then \(100(1-\alpha)\% \) Bayesian confidence interval for \(\mathcal{L}_0 f_\gamma \) is

\[
E\{\mathcal{L}_0 F_\gamma | y\} \pm z_{\alpha/2} \sqrt{\text{Var}\{\mathcal{L}_0 F_\gamma | y\}}
\]

where

\[
F_\gamma(x) = \sum_{\nu=1}^{p} \gamma_{\nu} F_{0\nu}(x) + \sum_{j=1}^{q} \gamma_{p+j} F_{1j}(x).
\]

Confidence intervals for a collection of points can be constructed similarly.

The same approach in Section 3.8.2 can be used to construct bootstrap confidence intervals. The extension is straightforward.

4.9 Examples

4.9.1 Tongue Shapes

Consider the ultrasound data. Let \(y \) be the response variable \texttt{height}; \(x_1 \) be the index of \texttt{environment} with \(x_1 = 1, 2, 3 \) corresponding to 2words, cluster, and schwa respectively; \(x_2 \) be the variable \texttt{length} scaled into \([0, 1]\); and \(x_3 \) be the variable \texttt{time} scaled into \([0, 1]\).

We first investigate how tongue shapes for an articulation differ under different environments at a particular time, say, at time 60 ms. Observations are shown in Figure 4.2. Consider a bivariate regression function \(f(x_1, x_2) \) where \(x_1 \) (\texttt{environment}) is a discrete variable with three levels, and \(x_2 \) (\texttt{length}) is a continuous variable in \([0, 1]\). Therefore, we model the joint function using the tensor product space \(\mathbb{R}^3 \otimes W_2^m[0, 1] \). The SS ANOVA decompositions of \(\mathbb{R}^3 \otimes W_2^m[0, 1] \) are given in (4.16) for \(m = 1 \) and (4.18) for \(m = 2 \).

The following statements fit the SS ANOVA model (4.16):

```r
> data(ultrasound)
> ultrasound$y <- ultrasound$height
> ultrasound$x1 <- ultrasound$env
> ultrasound$x2 <- ident(ultrasound$length)
> ssr(y~1, data=ultrasound, subset=ultrasound$time==60,
```
FIGURE 4.2 Ultrasound data, plots of observations (circles), fits (thin lines), and 95% Bayesian confidence intervals (shaded regions), and the mean curves among three environments (thicker lines). The tongue root is on the left, and the tongue tip is on the right in each plot.

\[
\text{rk} = \text{list}(\text{shrink1}(x_1), \linearmap(x_2), \text{rk}.\text{prod}(\text{shrink1}(x_1), \text{linear}(x_2))))
\]

where the \text{ident} function transforms a variable into \([0, 1]\), the \text{shrink1} function computes the RK of \(H_1^{(1)} = \{ f : \sum_{i=1}^{n} f(i) = 0 \}\) using the formula in (4.6), and the \text{rk}.\text{prod} function computes the product of RKs.

The following statements fit the SS ANOVA model (4.18) and summarize the fit:

```r
> ultra.el.c.fit <- ssr(y~x_2, data=ultrasound, 
  subset=ultrasound$time==60, 
  rk=list(shrink1(x_1), 
    \linear(x_2), 
    \text{rk}.\text{prod}(\text{shrink1}(x_1), \text{linear}(x_2))))
> summary(ultra.el.c.fit)
```

GCV estimate(s) of smoothing parameter(s) : 6.061108e-02
2.650966e-05 1.557379e-03 3.177218e-05
Equivalent Degrees of Freedom (DF): 13.57631
Estimate of sigma: 2.654545
where the function \texttt{kron} computes the RK, \(k_1(x_2)k_1(z_2) \), of the space \(\mathcal{H}_1^{(2)} = \{k_1(x_2)\} \).

Estimates of the smoothing parameters \(\lambda_3 \) and \(\lambda_4 \) are small, which indicates that both interactions \(\gamma_{x_1} \times (x_2 - 0.5) \) and \(f_{12}^{*}(x_1, x_2) \) may not be negligible. We compute the posterior mean and standard deviation for the overall interaction \(f_{12}(x_1, x_2) = \gamma_{x_1} \times (x_2 - 0.5) + f_{12}^{*}(x_1, x_2) \) on grid points as follows:

\[
\text{> grid <- seq(0,1,len=40)}\\
\text{> predict(ultra.el.c.fit, terms=c(0,0,0,0,1,1), newdata=expand.grid(x2=grid,x1=as.factor(1:3)))}
\]

The overall interaction and its 95% Bayesian confidence intervals are shown in Figure 4.3. It is clear that the interaction is nonzero.

![Figure 4.3](image)

\textbf{FIGURE 4.3} Ultrasound data, plots of the overall interaction (solid lines), and 95% Bayesian confidence intervals (shaded regions). Dashed line in each plot represents the constant function zero.

The posterior mean and standard deviation of the function \(f(x_1, x_2) \) can be calculated as follows:

\[
\text{> predict(ultra.el.c.fit, terms=c(1,1,1,1,1,1), newdata=expand.grid(x2=grid,x1=as.factor(1:3)))}
\]

The default for the option \texttt{terms} is a vector of all 1’s. Therefore, this option can be dropped in the above statement. The fits and 95% Bayesian confidence intervals are shown in Figure 4.2.
Note that in model (4.18) the first three terms represent the mean curve among three environments and the last three terms represent the departure of a particular environment from the mean curve. For comparison, we compute the estimate of the mean curve among three environments:

\[
\text{predict(ultra.el.c.fit, terms=c(1,1,0,1,0,0), newdata=expand.grid(x2=grid,x1=as.factor(1)))}
\]

The estimate of the mean curve is also displayed in Figure 4.2. The difference between the tongue shape under a particular environment and the average tongue shape can be made by comparing two lines in each plot. To look at the effect of each environment more closely, we calculate the estimate of the departure from the mean curve for each environment:

\[
\text{predict(ultra.el.c.fit, terms=c(0,0,1,0,1,1), newdata=expand.grid(x2=grid,x1=as.factor(1:3)))}
\]

The estimates of environment effects are shown in Figure 4.4. We can see that, comparing to the average shape, the tongue shape for 2words is front-raising, and the tongue shape for cluster is back-raising. The tongue shape for schwa is close to the average shape.

![Figure 4.4 Ultrasound data, plots of effects of environment, and 95% Bayesian confidence intervals. The dashed line in each plot represents the constant function zero.](image)

The model space of the SS ANOVA model (4.18) is \(\mathcal{M} = \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \mathcal{H}^2 \oplus \mathcal{H}^3 \oplus \mathcal{H}^4\), where \(\mathcal{H}^j\) for \(j = 0, \ldots, 4\) are defined in (4.19). In
particular, the spaces \mathcal{H}^3 and \mathcal{H}^4 contain smooth–linear and smooth–smooth interactions between x_1 and x_2. For illustration, suppose now that we want to fit model (4.18) with the same smoothing parameter for penalties to functions in \mathcal{H}^3 and \mathcal{H}^4. That is to set $\lambda_3 = \lambda_4$ in the PLS. As discussed in Section 4.6, this can be achieved by combining \mathcal{H}^3 and \mathcal{H}^4 into one space. The following statements fit the SS ANOVA model (4.18) with $\lambda_3 = \lambda_4$:

```r
> ultra.el.c.fit1 <- ssr(y~x2, data=ultra,
subset=ultra$time==60,
  rk=list(shrink1(x1),
       cubic(x2),
       rk.prod(shrink1(x1),kron(x2-.5))+
       rk.prod(shrink1(x1),cubic(x2))))
> summary(ultra.el.c.fit1)
```

GCV estimate(s) of smoothing parameter(s) : 5.648863e-02
2.739598e-05 3.766634e-05
Equivalent Degrees of Freedom (DF): 13.52603
Estimate of sigma: 2.65806

Next we investigate how the tongue shapes change over time for each environment. Figure 4.1 shows 3-d plots of observations. For a fixed environment, consider a bivariate regression function $f(x_2, x_3)$ where both x_2 and x_3 are continuous variables. Therefore, we model the joint function using the tensor product space $W^m_2[0,1] \otimes W^m_2[0,1]$. The SS ANOVA decompositions of $W^m_2[0,1] \otimes W^m_2[0,1]$ were presented in Section 4.4.3. Note that variables x_2 and x_3 in this section correspond to x_1 and x_2 in Section 4.4.3.

The following statements fit the tensor product of linear splines with $m_1 = m_2 = 1$, that is, the SS ANOVA model (4.20), under environment 2words ($x_1 = 1$):

```r
> ultrasound$x3 <- ident(ultrasound$time)
> ssr(height~1, data=ultrasound, subset=ultrasound$env==1,
  rk=list(linear(x2),
       linear(x3),
       rk.prod(linear(x2),linear(x3))))
```

The following statements fit the tensor product of cubic splines with $m_1 = m_2 = 2$, that is, the SS ANOVA model (4.21), under environment 2words and calculate estimates at grid points:

```r
> ultra.lt.c.fit[[1]] <- ssr(height~x2+x3+x2*x3,
data=ultrasound, subset=ultrasound$env==1,
```
\texttt{rk=list(cubic(x2), cubic(x3), rk.prod(kron(x2),cubic(x3)), rk.prod(cubic(x2),kron(x3)), rk.prod(cubic(x2),cubic(x3)))}

\begin{verbatim}
> grid <- seq(0,1,len=20)
> ultra.lt.c.pred <- predict(ultra.lt.c.fit[[1]],
newdata=expand.grid(x2=grid,x3=grid))
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig45.png}
\caption{Ultrasound data, 3-d plots of the estimated tongue shapes as functions of length and time based on the SS ANOVA model (4.21).}
\end{figure}

The SS AONVA model (4.21) for environments \textit{cluster} and \textit{schwa} can be fitted similarly. The estimates of all three environments are shown in Figure 4.5. These surfaces show how the tongue shapes change over time. Note that $\mu + \beta_1 \times (x_2 - 0.5) + f_1'(x_2)$ represents the mean tongue shape over the time period [0, 140], and the rest in (4.21), $\beta_2 \times (x_3 - 0.5) + f_2'(x_3) + \beta_3 \times (x_2 - 0.5) \times (x_3 - 0.5) + f_{12}'(x_2, x_3) + f_{12}''(x_2, x_3) + f_{12}'''(x_2, x_3)$, represents the departure from the mean shape at time x_3. To look at the time effect, we compute posterior means and standard deviations of the departure on grid points:

\begin{verbatim}
> predict(ultra.lt.c.fit[[1]], term=c(0,0,1,1,0,1,1,1,1),
newdata=expand.grid(x2=grid,x3=grid))
\end{verbatim}
Figure 4.6 shows the contour plots of the estimated time effect for three environments. Regions where the lower bounds of the 95% Bayesian confidence intervals are positive are shaded in dark grey, while regions where the upper bounds of the 95% Bayesian confidence intervals are negative are shaded in light grey.

Finally we investigate how the changes of tongue shapes over time differ among different environments. Consider a trivariate regression function $f(x_1, x_2, x_3)$ in tensor product space $\mathbb{R}^3 \otimes W_{m_1}^m [0,1] \otimes W_{m_2}^n [0,1]$. For simplicity, we derive the SS ANOVA decomposition for $m_1 = m_2 = 2$ only. Define averaging operators:

$$A_1^{(1)} f = \frac{1}{3} \sum_{x_1=1}^3 f,$$

$$A_1^{(k)} f = \int_0^1 f dx_k,$$

$$A_2^{(k)} f = \left(\int_0^1 f' dx_k \right) (x_k - 0.5), \quad k = 2, 3,$$

where $A_1^{(1)}$, $A_1^{(2)}$, and $A_1^{(3)}$ extract the constant function out of all pos-
sible functions for each variable, and $A^{(2)}_k$ and $A^{(3)}_k$ extract the linear function for x_2 and x_3. Let $A^{(1)}_k = I - A^{(2)}_k$ and $A^{(k)}_k = I - A^{(k)}_k$ for $k = 2, 3$. Then

$$f = \{A_1^{(1)} + A_2^{(1)}\} \{A_1^{(2)} + A_2^{(2)} \} A_3^{(3)} \{A_1^{(3)} + A_2^{(3)} + A_3^{(3)}\} f$$

$$= A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f$$

$$+ A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f$$

$$+ A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f$$

$$+ A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f + A_1^{(1)} A_2^{(1)} A_3^{(3)} f$$

$$\triangleq \mu + \beta_2 \times (x_3 - 0.5) + f_3^2(x_3)$$

$$+ \beta_1 \times (x_2 - 0.5) + \beta_3 \times (x_2 - 0.5)(x_3 - 0.5) + f_3^{13}(x_2, x_3)$$

$$+ f_2^3(x_2) + f_{23}^3(x_2, x_3) + f_{23}^{13}(x_2, x_3)$$

$$+ f_{12}^{3}(x_1, x_2) + f_{13}^{23}(x_1, x_2, x_3) + f_{13}^{23}(x_1, x_2, x_3)$$

$$+ f_{23}^{1}(x_1, x_2) + f_{23}^{13}(x_1, x_2, x_3) + f_{23}^{13}(x_1, x_2, x_3), \hspace{1cm} (4.50)$$

where μ represents the overall mean; $f_1(x_1)$ represents the main effect of x_1; $\beta_1 \times (x_2 - 0.5)$ and $\beta_2 \times (x_3 - 0.5)$ represent the linear main effects of x_2 and x_3; $f_2^3(x_2)$ and $f_3^2(x_3)$ represent the smooth main effects of x_2 and x_3; $f_{12}^{13}(x_1, x_2, x_3)$ represents the smooth-linear interaction between x_1 and $x_2 (x_3)$; $\beta_3 \times (x_2 - 0.5)(x_3 - 0.5)$, $f_3^{13}(x_2, x_3)$, $f_{23}^{13}(x_2, x_3)$ and $f_{23}^{13}(x_2, x_3)$ represent linear-linear, linear-smooth, smooth-linear and smooth-smooth interactions between x_2 and x_3; and $f_{12}^{13}(x_1, x_2, x_3)$, $f_{12}^{13}(x_1, x_2, x_3)$, $f_{12}^{13}(x_1, x_2, x_3)$, and $f_{12}^{13}(x_1, x_2, x_3)$ represent three-way interactions between x_1, x_2, and x_3. The overall main effect of x_k, $f_k(x_k)$, equals $\beta_k \times (x_k - 0.5) + f_k^1(x_k)$ for $k = 2, 3$. The overall interaction between x_1 and x_k, $f_{1k}(x_1, x_k)$, equals $f_{1k}^{11}(x_1, x_k) + f_{1k}^{11}(x_1, x_k)$ for $k = 2, 3$. The overall interaction between x_2 and x_3, $f_{23}(x_2, x_3)$, equals $\beta_3 \times (x_2 - 0.5)(x_3 - 0.5)$, $f_{23}^{13}(x_2, x_3)$, $f_{23}^{13}(x_2, x_3)$, and $f_{23}^{13}(x_2, x_3)$. The overall three-way interaction, $f_{123}(x_1, x_2, x_3)$, equals $f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3)$. The overall three-way interaction, $f_{123}(x_1, x_2, x_3)$, equals $f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3) + f_{123}^{111}(x_1, x_2, x_3)$.

We fit model (4.50) as follows:

```r
> ssr(height~I(x2-.5)*I(x3-.5)+I((x2-.5)*(x3-.5)),
data=ultrasound,
rk=list(shrink1(x1),
```
FIGURE 4.7 Ultrasound data, 3-d plots of the estimated tongue shape as a function of environment, length and time based on the SS ANOVA model (4.50).

The estimates of all three environments are shown in Figure 4.7. Note that the first nine terms in (4.50) represent the mean tongue shape surface over time, and the last nine terms in (4.50) represent the departure of an environment from this mean surface. To look at the environment effect on the tongue shape surface over time, we calculate the posterior mean and standard deviation of the departure for each environment:

```r
> pred <- predict(ultra.elt.c.fit,
                    newdata=expand.grid(x1=as.factor(1:3),x2=grid,x3=grid),
                    terms=c(0,0,0,0,1,0,0,1,1,1,0,0,0,1,1,1))
```
The contour plots of the estimated departures for three environments are shown in Figure 4.8. Note that the significant regions at time 60 ms are similar to those in Figure 4.4.

FIGURE 4.8 Ultrasound data, contour plots of estimated environment effect for three environments in the SS ANOVA model (4.50). Regions where the lower bounds of the 95% Bayesian confidence intervals are positive are shaded in dark grey. Regions where the upper bounds of the 95% Bayesian confidence intervals are negative are shaded in light grey.

4.9.2 Ozone in Arosa — Revisit

Suppose we want to investigate how ozone thickness changes over time by considering the effects of both *month* and *year*. In Section 2.10 we fitted an additive model (2.49) with the *month* effect modeled parametrically by a simple sinusoidal function, and the *year* effect modeled nonparametrically by a cubic spline. The following analyses show how to model both effects nonparametrically and investigate their interaction using SS ANOVA decompositions. We also show how to check the partial spline model (2.49).

Let y be the response variable *thick*, x_1 be the independent variable *month* scaled into $[0,1]$, and x_2 be the independent variable *year* scaled into $[0,1]$. It is reasonable to assume that the mean ozone thickness is a periodic function of x_1. We model the effect of x_1 using a periodic spline space $W_2^2(\text{per})$ and the effect of x_2 using a cubic spline space $W_2^2[0,1]$.
Therefore, we consider the SS ANOVA decomposition (4.23) for the tensor product space $W_2^{m_1}(\text{per}) \otimes W_2^2[0,1]$. The following statements fit model (4.23) with $m_1 = 2$:

```r
> Arosa$x1 <- (Arosa$month-0.5)/12
> Arosa$x2 <- (Arosa$year-1)/45
> arosa.ssanova.fit1 <- ssr(thick~I(x2-0.5), data=Arosa, rk=list(periodic(x1), cubic(x2), rk.prod(periodic(x1), kron(x2-.5)), rk.prod(periodic(x1), cubic(x2))))
> summary(arosa.ssanova.fit1)
```

GCV estimate(s) of smoothing parameter(s) : 5.442106e-06 2.154531e-09 3.387917e-06 2.961559e-02
Equivalent Degrees of Freedom (DF): 50.88469
Estimate of sigma: 14.7569

The mean function $f(x)$ in model (4.23) evaluated at design points $f = (f(x_1),\ldots,f(x_n))^T$ can be represented as

$$f = \mu 1 + f_1 + f_2 + f_{12},$$

where 1 is a vector of all ones, $f_1 = (f_1(x_1),\ldots,f_1(x_n))^T$, $f_2 = (f_2(x_1),\ldots,f_2(x_n))^T$, $f_{12} = (f_{12}(x_1),\ldots,f_{12}(x_n))^T$, and $f_1(x)$, $f_2(x)$ and $f_{12}(x_1)$ are the main effect of x_1, the main effect of x_2, and the interaction between x_1 and x_2. Eliminating the constant term, we have

$$f^* = f_1^* + f_2^* + f_{12}^*,$$

where $a^* = a - \bar{a}1$, and $\bar{a} = \sum_{i=1}^n a_i/n$. Let f^*, f_1^*, f_2^*, and f_{12}^* be the estimates of f^*, f_1^*, f_2^*, and f_{12}^*, respectively. To check the contributions of the main effects and interaction, we compute the quantities $\pi_k = (f_k^*)^T \hat{f} / \| \hat{f} \|^2$ for $k = 1, 2, 12$, and the Euclidean norms of \hat{f}, \hat{f}_1^*, \hat{f}_2^*, and \hat{f}_{12}^*:

```r
> f1 <- predict(arosa.ssanova.fit1, terms=c(0,0,1,0,0,0))
> f2 <- predict(arosa.ssanova.fit1, terms=c(0,1,0,1,0,0))
> f12 <- predict(arosa.ssanova.fit1, terms=c(0,0,0,1,0,0))
> fs1 <- scale(f1$fit, scale=F)
> fs2 <- scale(f2$fit, scale=F)
> fs12 <- scale(f12$fit, scale=F)
> ys <- fs1+fs2+fs12
> pi1 <- sum(fs1*ys)/sum(ys**2)
> pi2 <- sum(fs2*ys)/sum(ys**2)
```
> pi12 <- sum(fs12*ys)/sum(ys**2)
> print(round(c(pi1,pi2,pi12),4))
0.9375 0.0592 0.0033
> print(round(sqrt(c(sum(fs1**2),sum(fs2**2),
sum(fs12**2))),2))
768.31 186.21 30.25

See Gu (2002) for more details about the cosine diagnostics. It is clear
that the contribution from the interaction to the total variation is neg-
ligible. We also compute the posterior mean and standard deviation of
the interaction f_{12}:

> grid <- seq(0,1,len=50)
> predict(arosa.ssanova.fit1, terms=c(0,0,0,0,1,1),
expand.grid(x1=grid,x2=grid))

The estimate of the interaction is shown in Figure 4.9(a). Except for
a narrow region, the zero function is contained in the 95% Bayesian
confidence intervals. Thus the interaction is negligible.

FIGURE 4.9 Arosa data, (a) plot of estimate of the interaction in
model (4.23), (b) plot of estimate of the interaction in model (4.52),
and (c) plot of estimate of the smooth component f_{s1} in model (4.53).
For plots (a) and (b), regions where the lower bounds of the confidence
intervals are positive are shaded in dark grey, while regions where the
upper bounds of the confidence intervals are negative are shaded in light
grey. For plot (c), the solid line represents the estimate of f_{s1}, the shaded
region represents 95% Bayesian confidence intervals, and the dashed line
represents the zero function.
We drop the interaction term and fit an additive model

\[f(x_1, x_2) = \mu + \beta \times (x_2 - 0.5) + f_2^s(x_2) + f_1(x_1) \] \hspace{1cm} (4.51)

as follows:

\[\texttt{> update(arosa.ssanova.fit1,} \]
\[\texttt{rk=list(periodic(x1),cubic(x2)))} \]

The estimates of two main effects are shown in Figure 4.10.

FIGURE 4.10 Arosa data, plots of the estimates of the main effects in the SS ANOVA model (4.51). Circles in the left panel represent monthly average thickness minus the overall mean. Circles in the right panel represent yearly average thickness minus the overall mean. Shaded regions are 95% Bayesian confidence intervals.

Now suppose we want to check if the partial spline model (2.49) is appropriate for the Arosa data. For the month effect, consider the trigonometric spline model \(W_2^3(\text{per}) \) with \(L = D(D^2 + (2\pi)^2) \) defined in Section 2.11.5. The null space \(\text{span}\{1, \sin(2\pi x), \cos(2\pi x)\} \) corresponds to the sinusoidal model space assumed for the partial spline model (2.49). Consider the tensor product space \(W_2^3(\text{per}) \otimes W_2^2[0,1] \). Define averaging
the posterior mean and standard deviations for the overall interaction and \(f \) operators:

\[
A_1^{(1)} f = \int_0^1 f dx_1,
\]

\[
A_2^{(1)} f = \int_0^1 f \sin(2\pi x_1) dx_1,
\]

\[
A_3^{(1)} f = \int_0^1 f \cos(2\pi x_1) dx_1,
\]

\[
A_1^{(2)} f = \int_0^1 f dx_2,
\]

\[
A_2^{(2)} f = \left(\int_0^1 f' dx_2 \right) (x_2 - 0.5).
\]

Let \(A_4^{(1)} = I - A_1^{(1)} - A_2^{(1)} - A_3^{(1)} \) and \(A_4^{(2)} = I - A_1^{(2)} - A_2^{(2)} \). Then

\[
f = \{ A_1^{(1)} + A_2^{(1)} + A_3^{(1)} + A_4^{(1)} \} \{ A_1^{(2)} + A_2^{(2)} + A_3^{(2)} \} f
\]

\[
= A_1^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_1^{(1)} A_3^{(2)} f + A_1^{(1)} A_4^{(2)} f
\]

\[
+ A_1^{(1)} A_1^{(2)} f + A_1^{(1)} A_2^{(2)} f + A_1^{(1)} A_3^{(2)} f + A_1^{(1)} A_4^{(2)} f
\]

\[
+ A_1^{(1)} A_2^{(1)} f + A_1^{(1)} A_3^{(1)} f + A_1^{(1)} A_4^{(1)} f
\]

\[
+ A_1^{(1)} A_2^{(1)} f + A_1^{(1)} A_3^{(1)} f + A_1^{(1)} A_4^{(1)} f
\]

\[
\triangleq \mu + \beta_1 \times \sin(2\pi x_1) + \beta_2 \times \cos(2\pi x_1) + f_1'(x_1)
\]

\[
+ \beta_3 \times (x_2 - 0.5) + \beta_4 \times \sin(2\pi x_1) \times (x_2 - 0.5)
\]

\[
+ \beta_5 \times \cos(2\pi x_1) \times (x_2 - 0.5) + f_2'(x_1, x_2)
\]

\[
f_2'(x_2) + f_3'(x_1, x_2) + f_4'(x_1, x_2) + f_5'(x_1, x_2), \quad (4.52)
\]

where \(\mu \) represents the overall mean; \(\beta_1 \times \sin(2\pi x_1) \) and \(\beta_2 \times \cos(2\pi x_1) \) represent the parametric main effects of \(x_1 \); \(f_1'(x_1) \) represents the smooth main effect of \(x_1 \); \(\beta_3 \times (x_2 - 0.5) \) represents the linear main effect of \(x_2 \); \(f_2'(x_2) \) represents the smooth main effects of \(x_2 \); and \(\beta_4 \times \sin(2\pi x_1) \times (x_2 - 0.5), \beta_5 \times \cos(2\pi x_1) \times (x_2 - 0.5), f_3'(x_1, x_2), f_4'(x_1, x_2), f_5'(x_1, x_2), \) and \(f_5'(x_1, x_2) \) represent interactions. We fit model (4.52) and compute the posterior mean and standard deviations for the overall interaction as follows:

```r
> arosa.ssanova.fit3 <- ssr(thick~sin(2*pi*x1)+cos(2*pi*x1)
+I(x2-0.5)+I(sin(2*pi*x1)*(x2-0.5))
+I(cos(2*pi*x1)*(x2-0.5)), data=Arosa,
rk=list(lspline(x1,type='sine1'), cubic(x2),
 rk.prod(kron(sin(2*pi*x1)),cubic(x2)),
 rk.prod(kron(cos(2*pi*x1)),cubic(x2)),
```
The estimate of the interaction is shown in Figure 4.9(b). Except for a narrow region, the zero function is contained in the 95% Bayesian confidence intervals. Therefore, we drop interaction terms and consider the following additive model:

\[
\begin{align*}
 f(x_1, x_2) &= \mu + \beta_1 \times \sin(2\pi x_1) + \beta_2 \times \cos(2\pi x_1) + f_{s1}(x_1) \\
 \beta_3 \times (x_2 - 0.5) + f_{s2}(x_2).
\end{align*}
\]

(4.53)

Note that the partial spline model (2.49) is a special case of model (4.53) with \(f_{s1}(x_1) = 0 \). We fit model (4.53) and compute posterior means and standard deviations for \(f_{s1}(x_1) \):

```
> arosa.ssanova.fit4 <- ssr(thick~sin(2*pi*x1) + cos(2*pi*x1)+I(x2-0.5), data=Aros, 
  rk=list(lspline(x1,type='sine1'), cubic(x2)))
> predict(arosa.ssanova.fit4, expand.grid(x1=grid1,x2=0),
  terms=c(0,0,0,0,1,0))
```

The estimate of \(f_{s1}(x_1) \) is shown in Figure 4.9(c) with 95% Bayesian confidence intervals. It is clear that \(f_{s1}(x_1) \) is nonzero, which indicates that the simple sinusoidal function is inadequate for modeling the month effect.

4.9.3 Canadian Weather — Revisit

Consider the Canadian weather data with annual temperature profiles from all 35 stations as functional data. To investigate how the weather patterns differ, Ramsay and Silverman (2005) divided Canada into four climatic regions: Atlantic, Continental, Pacific, and Arctic. Let \(y \) be the response variable \(\text{temp} \), \(x_1 \) be the independent variable \(\text{region} \), and \(x_2 \) be the independent variable \(\text{month} \) scaled into \([0, 1]\). The functional ANOVA (FANOVA) model (13.1) in Ramsay and Silverman (2005) assumes that

\[
y_{k,x_1}(x_2) = \eta(x_2) + \alpha_{x_1}(x_2) + \epsilon_{k,x_1}(x_2),
\]

(4.54)
where \(y_{k,x_1}(x_2) \) is the temperature profile of station \(k \) in climate region \(x_1 \), \(\eta(x_2) \) is the average temperature profile across all of Canada, \(\alpha_{x_1}(x_2) \) is the departure of the region \(x_1 \) profile from the population average profile \(\eta(x_2) \), and \(\epsilon_{k,x_1}(x_2) \) are random errors. It is clear that the FANOVA can be derived from the SS ANOVA decomposition (4.22) by letting \(\eta(x_2) = \mu + f_2(x_2) \) and \(\alpha_{x_1}(x_2) = f_1(x_1) + f_{12}(x_1, x_2) \). The side condition for the FANOVA model (4.54), \(\sum_{x_1=1}^{4} \alpha_{x_1}(x_2) = 0 \) for all \(x_2 \), is satisfied from the construction of the SS ANOVA decomposition. Model (4.54) is an example of situation (ii) in Section 2.10 where the dependent variable involves functional data.

FIGURE 4.11 Canadian weather data, plots of temperature profiles of stations in four regions (thin lines), and the estimated profiles (thick lines).

Observed temperature profiles are shown in Figure 4.11. The following statements fit model (2.10) and compute posterior means and standard deviations for four regions:

\[
> x1 <- \text{rep(as.factor(region),rep(12,35))}
\]
\begin{verbatim}
> x2 <- (rep(1:12,35)-.5)/12
> y <- as.vector(monthlyTemp)
> canada.fit2 <- ssr(y~1,
 rk=list(shrink1(x1), periodic(x2),
 rk.prod(shrink1(x1),periodic(x2))))
> xgrid <- seq(.5/12,11.5/12,len=50)
> zone <- c('Atlantic','Pacific','Continental','Arctic')
> grid <- data.frame(x1=rep(zone,rep(50,4)),
 x2=rep(xgrid,4))
> canada.fit2.p1 <- predict(canada.fit2, newdata=grid)

Estimates of mean temperature functions for four regions are shown in Figure 4.11. To look at the region effects α_{x_1} more closely, we compute their posterior means and standard deviations:

> canada.fit2.p2 <- predict(canada.fit2, newdata=grid,
 terms=c(0,1,0,1))

Estimates of region effects and 95% Bayesian confidence intervals are shown in Figure 4.12. These estimates are similar to those in Ramsay and Silverman (2005).

4.9.4 Texas Weather

Instead of dividing stations into geological regions as in model (4.54), suppose we want to investigate how the weather patterns depend on geographical locations in terms of latitude and longitude. For illustration, consider the Texas weather data consisting of average monthly temperatures during 1961–1990 from 48 weather stations in Texas. Denote $x_1 = (\text{lat}, \text{long})$ as the geological location of a station, and x_2 as the month variable scaled into $[0, 1]$. We want to investigate how the expected temperature, $f(x_1, x_2)$, depends on both location and month variables. Average monthly temperatures are computed using monthly temperatures during 1986–1990 for all 48 stations and are used as observations of $f(x_1, x_2)$. For each fixed station, the annual temperature profile can be regarded as functional data on a continuous interval. Figure 4.13 shows these curves for all 48 stations. For each fixed month, the temperature surface as a function of latitude and longitude can be regarded as functional data on \mathbb{R}^2. Figure 4.14 shows contour plots of observed surfaces for January, April, July, and October.

A natural model space for the location variable is the thin-plate spline $W_2^2(\mathbb{R}^2)$, and a natural model space for the month variable is $W_2^2(\text{per})$. Therefore, we fit the SS ANOVA model (4.24):
\end{verbatim}
FIGURE 4.12 Canadian weather data, plots of the estimated region effects to temperature, and 95% Bayesian confidence intervals.

```r
> data(TXtemp); TXtemp1 <- TXtemp[TXtemp$year>1985,]
> y <- gapply(TXtemp1, which=5, 
    FUN=function(x) mean(x[x!=-99.99]),
    group=TXtemp1$stacod*TXtemp1$month)
> tx.dat <- data.frame(y=as.vector(t(matrix(y,48,12,
    byrow=F))))
> tx.dat$x2 <- rep((1:12-0.5)/12, 48)
> lat <- TXtemp$lat[seq(1, nrow(TXtemp),by=360)]
> long <- TXtemp$long[seq(1, nrow(TXtemp),by=360)]
> tx.dat$x11 <- rep(scale(lat), rep(12,48))
> tx.dat$x12 <- rep(scale(long), rep(12,48))
> tx.dat$stacod <- rep(TXtemp$stacod[seq(1,nrow(TXtemp),
    by=360)],rep(12,48))
> tx.ssanova <- ssr(y~x11+x12, data=tx.dat,
    rk=list(tp(list(x11,x12)),
           periodic(x2),
           rk.prod(tp.linear(list(x11,x12)),periodic(x2)),
           rk.prod(tp(list(x11,x12)), periodic(x2))))
```
FIGURE 4.13 Texas weather data, plot of temperature profiles for all 48 stations.

FIGURE 4.14 Texas weather data, contour plots of observations for January, April, July, and October. Dots represent station locations.
where \(\text{tp.linear} \) computes the RK, \(\tilde{\phi}_2(x)\tilde{\phi}_2(z) + \tilde{\phi}_3(x)\tilde{\phi}_3(z) \), of the subspace \(\{\tilde{\phi}_2, \tilde{\phi}_3\} \).

The location effect equals \(\beta_1 \tilde{\phi}_1(x_1) + \beta_2 \tilde{\phi}_2(x_1) + f_s(x_1) + f_{ls}(x_1, x_2) + f_{ss}(x_1, x_2) \). We compute posterior means and standard deviations of the location effect for the southmost (Rio Grande City 3W), northmost (Stratford), westmost (El Paso WSO AP), and eastmost (Marshall) stations:

```r
> selsta <- c(tx.dat[tx.dat$x11==min(tx.dat$x11),7][1],
              tx.dat[tx.dat$x11==max(tx.dat$x11),7][1],
              tx.dat[tx.dat$x12==min(tx.dat$x12),7][1],
              tx.dat[tx.dat$x12==max(tx.dat$x12),7][1])
> sellat <- sellong <- NULL
> for (i in 1:4) {
    sellat <- c(sellat,
                tx.dat$x11[tx.dat$stacod==selsta[i]][1])
    sellong <- c(sellong,
                 tx.dat$x12[tx.dat$stacod==selsta[i]][1])
}
> grid <- data.frame(x11=rep(sellat,rep(40,4)),
                     x12=rep(sellong,rep(40,4)),
                     x2=rep(seq(0,1,len=40), 4))
> tx.pred1 <- predict(tx.ssanova, grid,
                     terms=c(0,1,1,1,0,1,1))
```

The estimates of these effects and 95% Bayesian confidence intervals are shown in Figure 4.15. The curve in each plot shows how temperature profile of that particular station differ from the average profile among the 48 stations. It is clear that the temperature in Rio Grande City is higher than average, and the temperature in Stratford is lower than average, especially in the winter. The temperature in El Paso is close to average in the first half year, and lower than average in the second half year. The temperature in Marshall is slightly above average.

The month effect equals \(f_2(x_2) + f_{ls}(x_1, x_2) + f_{ss}(x_1, x_2) \). We compute posterior means and standard deviations of the month effect:

```r
> tx.pred2 <- predict(tx.ssanova, terms=c(0,0,0,0,1,1,1))
```

The estimates of these effects for January, April, July, and October are shown in Figure 4.16. Each plot in Figure 4.16 shows how temperature pattern for that particular month differ from the average pattern among all 12 months. As expected, the temperature in January is colder than average, while the temperature in July is warmer than average. In general, the difference becomes smaller from north to south. The temperatures in April and October are close to average.
FIGURE 4.15 Texas weather data, plots of the location effect (solid lines) for four selected stations with 95% Bayesian confidence intervals (dashed lines).
FIGURE 4.16 Texas weather data, plots of the month effect for January, April, July, and October.
Chapter 5

Spline Smoothing with Heteroscedastic and/or Correlated Errors

5.1 Problems with Heteroscedasticity and Correlation

In the previous chapters we have assumed that observations are independent with equal variances. These assumptions may not be appropriate for many applications. This chapter presents spline smoothing methods for heteroscedastic and/or correlated observations. Before introducing these methods, we first illustrate potential problems associated with the presence of heteroscedasticity and correlation in spline smoothing.

We use the following simulation to illustrate potential problems with heteroscedasticity. Observations are generated from model (1.1) with \(f(x) = \sin(4\pi x^2) \), \(x_i = i/n \) for \(i = 1, \ldots, n \) and \(n = 100 \). Random errors are generated independently from the Gaussian distribution with mean zero and variance \(\sigma^2 \exp\{\alpha |f(x)|\} \). Therefore, we have unequal variances when \(\alpha \neq 0 \). We set \(\sigma = 0.05 \) and \(\alpha = 4 \). For each simulated data, we first fit the cubic spline directly using PLS with GCV and GML choices of smoothing parameters. Note that these direct fits ignore heteroscedasticity. We then fit the cubic spline using the penalized weighted LS (PWLS) introduced in Section 5.2.1 with known weights \(W = \text{diag}(\exp\{-4|f(x_1)|\}, \ldots, \exp\{-4|f(x_n)|\}) \). For each fit, we compute weighted MSE (WMSE)

\[
WMSE = \frac{1}{n} \sum_{i=1}^{n} w_i (\hat{f}(x_i) - f(x_i))^2,
\]

where \(w_i = \exp\{-4|f(x_i)|\} \). We also construct 95% Bayesian confidence intervals for each fit. The simulation is repeated 100 times. Figure 5.1 shows the performances of unweighted and weighted methods in terms of WMSE and coverages of Bayesian confidence intervals. Figure 5.1(a)
FIGURE 5.1 (a) Boxplots of WMSEs based on PLS with GCV and GML choices of the smoothing parameter and PWLS with GCV (labeled as GCVW) and GML (labeled as GMLW) choices of the smoothing parameter. Average WMSEs are marked as pluses; (b) boxplots of across-the-function coverages of 95% Bayesian confidence intervals for the PLS fits with GML choice of the smoothing parameter (labeled as unweighted) and PWLS fits with GML choice of the smoothing parameter (labeled as weighted). Average coverages are marked as pluses; (c) plot of pointwise coverages (solid line) of 95% Bayesian confidence intervals for the PLS fits with GML choice of the smoothing parameter; (d) plot of pointwise coverages (solid line) of 95% Bayesian confidence intervals for the PWLS fits with GML choice of the smoothing parameter. Dotted lines in (b), (c), and (d) represent the nominal value. Dashed lines in (c) and (d) represent a scaled version of the variance function \(\exp\{\alpha|f(x)|\} \).

indicates that, even though ignoring heteroscedasticity, the unweighted methods provide good fits to the function. The weighted methods lead to better fits. Bayesian confidence intervals based on both methods provide the intended across-the-function coverages (Figure 5.1(b)). However, Figure 5.1(c) reveals the problem with heteroscedasticity: point-
wise coverages in regions with larger variances are smaller than the nominal value, while pointwise coverages in other regions are larger than the nominal value. Obviously, this is caused by ignoring heteroscedasticity. Bayesian confidence intervals based on the PWLS method overcomes this problem (Figure 5.1(d)).

Comparing with heteroscedasticity, the potential problems associated with correlation are more fundamental and difficult to deal with. For illustration, again we simulate data from model (1.1) with \(f(x) = \sin(4\pi x^2) \), \(x_i = i/n \) for \(i = 1, \ldots, n \) and \(n = 100 \). Random errors \(\epsilon_i \) are generated by a first-order autoregressive model (AR(1)) with mean zero, standard deviation 0.2, and first-order correlation 0.6. Figure 5.2 shows the simulated data, the true function, and three cubic spline fits with smoothing parameters chosen by the UBR, GCV, and GML methods, respectively. The true variance is used in the calculation of the UBR criterion. All fits are wiggly, which indicates that the estimated smoothing parameters are too small. This undersmoothing phenomenon is common in the presence of positive correlation. Ignoring correlation, the UBR, GCV, and GML methods perceive that all the trend (signal) in the data is due to the mean function \(f \) and attempt to incorporate that trend into the estimate. Correlated random errors may induce local trend and thus fool these methods to select smaller smoothing parameters such that the local trend can be picked up.

FIGURE 5.2 Plots of the true function (dashed lines), observations (circles), and the cubic spline fits (solid lines) with UBR, GCV, and GML choices of smoothing parameters. The true variance is used in the calculation of the UBR criterion.
5.2 Extended SS ANOVA Models

Suppose observations are generated by

\[y_i = \mathcal{L}_i f + \epsilon_i, \quad i = 1, \ldots, n, \]

(5.1)

where \(f \) is a multivariate function in a model space \(\mathcal{M} \), and \(\mathcal{L}_i \) are bounded linear functionals. Let \(\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \). We assume that \(\mathbb{E}(\epsilon) = 0 \) and \(\text{Cov}(\epsilon) = \sigma^2 W^{-1} \). In this chapter we consider the SS ANOVA model space

\[\mathcal{M} = \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \mathcal{H}^q, \]

(5.2)

where \(\mathcal{H}^0 \) is a finite dimensional space collecting all functions that are not going to be penalized, and \(\mathcal{H}^1, \ldots, \mathcal{H}^q \) are orthogonal RKHS’s with RKs \(R^j \) for \(j = 1, \ldots, q \). Model (5.1) is an extension of the SS ANOVA model (4.31) with non-iid random errors. See Section 8.2 for a more general model involving linear functionals and non-iid errors.

5.2.1 Penalized Weighted Least Squares

Our goal is to estimate \(f \) as well as \(W \) when it is unknown. We first assume that \(W \) is fixed and consider the estimation of the nonparametric function \(f \). A direct generalization of the PLS (4.32) is the following PWLS:

\[
\min_{f \in \mathcal{M}} \left\{ \frac{1}{n}(y - f)^T W (y - f) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j f \|^2 \right\},
\]

(5.3)

where \(y = (y_1, \ldots, y_n)^T \), \(f = (\mathcal{L}_1 f, \ldots, \mathcal{L}_n f)^T \), and \(P_j \) is the orthogonal projection in \(\mathcal{M} \) onto \(\mathcal{H}^j \).

Let \(\theta = (\theta_1, \ldots, \theta_q) \). Denote \(\phi_1, \ldots, \phi_p \) as basis functions of \(\mathcal{H}^0 \), \(T = \{ \mathcal{L}_i \phi_\nu \}_{i=1, \nu=1}^{n} \), \(\Sigma_k = \{ \mathcal{L}_i \mathcal{L}_j R^k \}_{i,j=1}^{n} \) for \(k = 1, \ldots, q \), and \(\Sigma_\theta = \sum_{j=1}^{q} \theta_j \Sigma_j \). As in the previous chapters, we assume that \(T \) is of full column rank. The same arguments in Section 2.4 apply to the PWLS. Therefore, by the Kimeldorf–Wahba representer theorem, the solution to (5.3) exists and is unique, and the solution can be represented as

\[
\hat{f}(x) = \sum_{\nu=1}^{p} d_\nu \phi_\nu(x) + \sum_{i=1}^{n} \epsilon_i \sum_{j=1}^{q} \theta_j \mathcal{L}_i(z) R^j(x, z).
\]
Let \(c = (c_1, \ldots, c_n)^T \) and \(d = (d_1, \ldots, d_p)^T \). Let \(\hat{f} = (\mathcal{L}_1 \hat{f}, \ldots, \mathcal{L}_n \hat{f})^T \) be the vector of fitted values. It is easy to check that \(\hat{f} = Td + \Sigma \theta c \) and \(\|P_1 \hat{f}\|^2 = c^T \Sigma \theta c \). Then the PWLS (5.3) reduces to
\[
\frac{1}{n}(y - Td - \Sigma \theta c)^T W (y - Td - \Sigma \theta c) + \lambda c^T \Sigma \theta c.
\]
(5.4)

Taking the first derivatives leads to the following equations for \(c \) and \(d \):
\[
\begin{align*}
(\Sigma \theta W \Sigma \theta + n \lambda \Sigma \theta + \Sigma \theta W Td = \Sigma \theta W y,
T^T \Sigma \theta c + T^T W Td = T^T W y.
\end{align*}
\]
(5.5)

It is easy to check that a solution to
\[
(\Sigma \theta + n \lambda W^{-1}) c + Td = y,
T^T c = 0,
\]
(5.6)
is also a solution to (5.5). Let \(M = \Sigma \theta + n \lambda W^{-1} \) and
\[
T = (Q_1 Q_2) \begin{pmatrix} R \\ \theta \end{pmatrix}
\]
be the QR decomposition of \(T \). Then the solutions to (5.6) are
\[
\begin{align*}
 c &= Q_2 (Q_2^T M Q_2)^{-1} Q_2^T y, \\
 d &= R^{-1} Q_1^T (y - M c).
\end{align*}
\]
(5.7)

Based on the first equation in (5.6) and the fact that \(\hat{f} = Td + \Sigma \theta c \), we have
\[
\hat{f} = y - n \lambda W^{-1} c = H(\lambda, \theta) y
\]
where
\[
H(\lambda, \theta) = I - n \lambda W^{-1} Q_2 (Q_2^T M Q_2)^{-1} Q_2^T.
\]
(5.8)
is the hat matrix. The dependence of \(H \) on the smoothing parameters is expressed explicitly in (5.8). In the remainder of this chapter, for simplicity, the notation \(H \) will be used. Note that, different from the independent case, \(H \) may be asymmetric.

To solve (5.6), for fixed \(W \) and smoothing parameters, consider transformations \(\tilde{y} = W^{1/2} y, \tilde{T} = W^{1/2} T, \tilde{\Sigma} = W^{1/2} \Sigma \theta W^{1/2}, \tilde{\hat{c}} = W^{-1/2} c \), and \(\tilde{d} = d \). Then equations in (5.6) are equivalent to the following equations
\[
\begin{align*}
(\tilde{\Sigma} + n \lambda I) \tilde{\hat{c}} + \tilde{T} d &= \tilde{y}, \\
\tilde{T}^T \tilde{\hat{c}} &= 0.
\end{align*}
\]
(5.9)

Note that equations in (5.9) have the same form as those in (2.21); thus methods in Section 2.4 can be used to compute \(\tilde{\hat{c}} \) and \(\tilde{d} \). Transforming back, we have the solutions of \(c \) and \(d \).
5.2.2 UBR, GCV and GML Criteria

We now extend the UBR, GCV, and GML criteria for the estimation of smoothing parameters λ and θ as well as W when it is unknown.

Define the weighted version of the loss function

$$L(\lambda, \theta) = \frac{1}{n} (\hat{f} - f)^T W (\hat{f} - f)$$

and weighted MSE as $\text{WMSE}(\lambda, \theta) \equiv E L(\lambda, \theta)$. Then

$$\text{WMSE}(\lambda, \theta) = \frac{1}{n} y^T (I - H^T) W (I - H) y + \frac{2\sigma^2}{n} \text{tr} H^T W H W^{-1}.$$ \hfill (5.11)

It is easy to check that an unbiased estimate of $\text{WMSE}(\lambda, \theta) + \sigma^2$ is

$$\text{UBR}(\lambda, \theta) = \frac{1}{n} y^T (I - H^T) W (I - H) y + 2\frac{\sigma^2}{n} \text{tr} H.$$ \hfill (5.12)

The UBR estimates of smoothing parameters and W when it is unknown are the minimizers of $\text{UBR}(\lambda, \theta)$.

To extend the CV and GCV methods, we first consider the special case when W is diagonal: $W = \text{diag}(w_1, \ldots, w_n)$. Denote $\hat{f}^{[i]}$ as the minimizer of the PWLS (5.3) based on all observations except y_i. It is easy to check that the leaving-out-one lemma in Section 3.4 still holds and $L_i \hat{f}^{[i]} - y_i = (L_i \hat{f} - y_i)/(1 - h_{ii})$, where h_{ii} are the diagonal elements of H. Then the cross-validation criterion is

$$\text{CV}(\lambda, \theta) \equiv \frac{1}{n} \sum_{i=1}^n w_i \left(L_i \hat{f}^{[i]} - y_i\right)^2 = \frac{1}{n} \sum_{i=1}^n w_i \frac{(L_i \hat{f} - y_i)^2}{(1 - h_{ii})^2}.$$ \hfill (5.13)

Replacing h_{ii} by the average of diagonal elements leads to the GCV criterion

$$\text{GCV}(\lambda, \theta) \equiv \frac{1}{n} \frac{||W^{1/2}(I - H)y||^2}{\left(\frac{1}{n} \text{tr}(I - H)\right)^2}.$$ \hfill (5.14)

Next consider the following model for clustered data

$$y_{ij} = L_{ij} f + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i,$$ \hfill (5.15)

where y_{ij} is the jth observation in cluster i, and L_{ij} are bounded linear functionals. Let $n = \sum_{i=1}^m n_i$, $y_i = (y_{i1}, \ldots, y_{in_i})^T$, $y = (y_1^T, \ldots, y_m^T)^T$, $\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{in_i})^T$, and $\epsilon = (\epsilon_1^T, \ldots, \epsilon_m^T)^T$. We assume that $\text{Cov}(\epsilon_i) = \sigma^2 W_i^{-1}$ and observations between clusters are independent. Consequently, $\text{Cov}(\epsilon) = \sigma^2 W^{-1}$, where $W = \text{diag}(W_1, \ldots, W_m)$ is a block diagonal matrix. Assume that $f \in \mathcal{M}$, where \mathcal{M} is the model space in
(5.2). We estimate \(f \) using the PWLS (5.3). Let \(\hat{f} \) be the PWLS estimate based on all observations, and \(\hat{f}^{[i]} \) be the PWLS estimate based on all observations except those from the \(i \)th cluster \(y_i \). Let \(f_i = (L_{1i} \hat{f}, \ldots, L_{m,i} \hat{f})^T \), \(f = (f_1^T, \ldots, f_m^T)^T \), \(\hat{f} = (\hat{f}_1^T, \ldots, \hat{f}_m^T)^T \), \(\hat{f}^{[i]} = (\hat{f}_{1,i}, \ldots, \hat{f}_{n,i})^T \), and \(f^{[i]} = ((f_1^{[i]})^T, \ldots, (f_m^{[i]})^T)^T \).

Leaving-out-one-cluster Lemma

For any fixed \(i \), \(\hat{f}^{[i]} \) is the minimizer of

\[
\frac{1}{n} \left(\hat{f}^{[i]}_i - f_i \right)^T W_i \left(\hat{f}^{[i]}_i - f_i \right) + \frac{1}{n} \sum_{j \neq i} (y_j - f_j)^T W_j (y_j - f_j) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j f \|^2. \tag{5.16}
\]

[Proof] For any function \(f \in \mathcal{M} \), we have

\[
\frac{1}{n} \left(f^{[i]}_i - f_i \right)^T W_i \left(f^{[i]}_i - f_i \right) + \frac{1}{n} \sum_{j \neq i} (y_j - f_j)^T W_j (y_j - f_j) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j f \|^2 \\
\geq \frac{1}{n} \sum_{j \neq i} (y_j - f_j)^T W_j (y_j - f_j) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j f \|^2 \\
\geq \frac{1}{n} \sum_{j \neq i} (y_j - \hat{f}^{[i]}_j)^T W_j (y_j - \hat{f}^{[i]}_j) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j \hat{f}^{[i]} \|^2 \\
= \frac{1}{n} \left(f^{[i]}_i - \hat{f}^{[i]}_i \right)^T W_i \left(f^{[i]}_i - \hat{f}^{[i]}_i \right) + \frac{1}{n} \sum_{j \neq i} (y_j - \hat{f}^{[i]}_j)^T W_j (y_j - \hat{f}^{[i]}_j) + \lambda \sum_{j=1}^{q} \theta_j^{-1} \| P_j \hat{f}^{[i]} \|^2.
\]

The leaving-out-one-cluster lemma implies that \(\hat{f} = Hy \) and \(\hat{f}^{[i]} = Hy^{[i]} \), where \(H \) is the hat matrix and \(y^{[i]} \) is the same as \(y \) except that \(y_i \) is replaced by \(\hat{f}^{[i]}_i \). Divide the hat matrix \(H \) according to clusters such
that $H = \{H_{ik}\}_{i,k=1}^m$, where H_{ik} is an $n_i \times n_k$ matrix. Then we have

$$\hat{f}_i = \sum_{j=1}^m H_{ij} y_j,$$

$$\hat{f}_i^{[i]} = \sum_{j \neq i} H_{ij} y_j + H_{ii} \hat{f}_i^{[i]}.$$

Assume that $I - H_{ii}$ is invertible. Then

$$\hat{f}_i^{[i]} - y_i = (I - H_{ii})^{-1}(\hat{f}_i - y_i).$$

The cross-validation criterion

$$\text{CV}(\lambda, \theta) \triangleq \frac{1}{n} \sum_{i=1}^m \left(\hat{f}_i^{[i]} - y_i \right)^T W_i \left(\hat{f}_i^{[i]} - y_i \right)$$

$$= \frac{1}{n} \sum_{i=1}^m \left(\hat{f}_i - y_i \right)^T (I - H_{ii})^{-T} W_i (I - H_{ii})^{-1} \left(\hat{f}_i - y_i \right). \quad (5.17)$$

Replacing $I - H_{ii}$ by its generalized average G_i (Ma, Dai, Klein, Klein, Lee and Wahba 2010), we have

$$\text{GCV}(\lambda, \theta) \triangleq \frac{1}{n} \sum_{i=1}^m \left(\hat{f}_i - y_i \right)^T G_i W_i G_i \left(\hat{f}_i - y_i \right), \quad (5.18)$$

where $G_i = a_i I_{n_i} - b_i 1_{n_i} 1_{n_i}^T$, $a_i = 1/\gamma_i$, $b_i = \gamma_i/[(\delta_i - \gamma_i)(\delta_i + (n_i - 1)\gamma_i)]$, $\delta_i = (n - \text{tr}H)/mn_i$, $\gamma_i = 0$ when $n_i = 1$ and $\gamma_i = -\sum_{i=1}^m \sum_{j \neq i} b_{ij}/mn_i (n_i - 1)$ when $n_i > 1$. G_i is the element of the st row and th column of the matrix H_{ii}, I_{n_i} is an identity matrix of size n_i, and 1_{n_i} is an n_i-vector of all ones. The CV and GCV estimates of smoothing parameters and W when it is unknown are the minimizers of the CV and GCV criteria.

To derive the GML criterion, we first construct a Bayes model for the extended SS ANOVA model (5.1). Assume the same prior for f as in (4.42):

$$F(x) = \sum_{\nu=1}^p \zeta_{\nu} \phi_{\nu}(x) + \delta \sum_{j=1}^q \sqrt{\theta_j} U_j(x), \quad (5.19)$$

where $\zeta_{\nu} \sim \text{N}(0, \kappa)$, $U_j(x)$ are independent, zero-mean Gaussian stochastic processes with covariance function $R^j(x, z)$, ζ_{ν} and $U_j(x)$ are mutually independent, and κ and δ are positive constants. Suppose observations are generated from

$$y_i = L_i F + \epsilon_i, \quad i = 1, \ldots, n, \quad (5.20)$$
where \(\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \sim N(0, \sigma^2 W^{-1}) \).

Let \(L_0 \) be a bounded linear functional on \(M \). Let \(\lambda = \sigma^2 / n \delta \). The same arguments in Section 3.6 hold when \(M = \Sigma + n \lambda I \) is replaced by
\[
M = \Sigma + n \lambda W^{-1}
\]
in this chapter (Wang 1998b). Therefore,
\[
\lim_{\kappa \to \infty} E(L_0 F|Y) = L_0 \hat{f},
\]
and an extension of the GML criterion is
\[
\text{GML}(\lambda, \theta) = \frac{y^T W(I - \hat{H}) y}{\{\det^+(W(I - \hat{H}))\}^{1/p}}, \quad (5.21)
\]
where \(\det^+ \) is the product of the nonzero eigenvalues. The GML estimates of smoothing parameters and \(W \) when it is unknown are the minimizers of \(\text{GML}(\lambda, \theta) \).

The GML estimator of the variance \(\sigma^2 \) is (Wang 1998b)
\[
\hat{\sigma}^2 = \frac{y^T W(I - \hat{H}) y}{n - p}, \quad (5.22)
\]

5.2.3 Known Covariance

In this section we discuss the implementation of the UBR, GCV, and GML criteria in Section 5.2.2 when \(W \) is known. In this situation we only need to estimate the smoothing parameters \(\lambda \) and \(\theta \). Consider transformations discussed at the end of Section 5.2.1. Let \(\tilde{f} = W^{1/2} \hat{f} \) be the fits to the transformed data, and \(\tilde{H} \) be the hat matrix associated with the transformed data. Then \(\tilde{H} y = \tilde{f} = W^{-1/2} \hat{f} = W^{-1/2} \tilde{H} \tilde{y} = W^{-1/2} \tilde{H} W^{1/2} y \) for any \(y \). Therefore,
\[
H = W^{-1/2} \tilde{H} W^{1/2}, \quad (5.23)
\]

From (5.23), the UBR, GCV, and GML in (5.12), (5.14), and (5.21) can be rewritten based on the transformed data as
\[
\text{UBR}(\lambda, \theta) = \frac{1}{n} \| (I - \tilde{H}) \tilde{y} \|^2 + \frac{2\sigma^2}{n} \text{tr} \tilde{H}, \quad (5.24)
\]
\[
\text{GCV}(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^n \| (I - \tilde{H}) \tilde{y} \|^2 \left\{ \frac{1}{n} \text{tr} (I - \tilde{H}) \right\}^2, \quad (5.25)
\]
\[
\text{GML}(\lambda, \theta) = \frac{C \tilde{y}^T (I - \tilde{H}) \tilde{y}}{\{\det^+(I - \tilde{H})\}^{1/p}}, \quad (5.26)
\]
where \(C \) in \(\text{GML}(\lambda, \theta) \) is a constant independent of \(\lambda \) and \(\theta \). Equations (5.24), (5.25), and (5.26) indicate that, when \(W \) is known, the UBR,
GCV, and GML estimates of smoothing parameters can be calculated based on the transformed data using the method described in Section 4.7.

5.2.4 Unknown Covariance

We now consider the case when \(W \) is unknown. When a separate method is available for estimating \(W \), one approach is to estimate the function \(f \) and covariance \(W \) iteratively. For example, the following two-step procedure is simple and easy to implement: (1) Estimate the function with a “sensible” choice of the smoothing parameter; (2) Estimate the covariance using residuals; and (3) Estimate the function again using the estimated covariance. However, it may not work in certain situations due to the interplay between the smoothing parameter and correlation.

We use the following two simple simulations to illustrate the potential problem associated with the above iterative approach. In the first simulation, \(n = 100 \) observations are generated according to model (1.1) with \(f(x) = \sin(4\pi x^2) \), \(x_i = i/n \) for \(i = 1, \ldots, n \), and \(\epsilon_i \) iid \(\sim N(0, 0.2^2) \). We fit a cubic spline with a fixed smoothing parameter \(\lambda \) such that \(\log_{10}(n\lambda) = -3.5 \). Figure 5.3(a) shows the fit, which is slightly oversmoothed. The estimated autocorrelation function (ACF) of residuals (Figure 5.3(b)) suggests an autoregressive structure even though the true random errors are independent. It is clear that the leftover signal due to oversmoothing shows up in the residuals. In the second simulation, \(n = 100 \) observations are generated according to model (1.1) with \(f(x) \equiv 0, x_i = i/n \) for \(i = 1, \ldots, n \), and \(\epsilon_i \) are generated by an AR(1) model with mean zero, standard deviation 0.2, and first-order correlation 0.6. Figure 5.3(c) shows the cubic spline fit with GCV choice of the smoothing parameter. The fit picks up local trend in the AR(1) process, and the estimated ACF of residuals (Figure 5.3(d)) does not reveal any autoregressive structure. In both cases, the mean functions are incorrectly estimated, and the conclusions about the error structures are erroneous. These two simulations indicate that a wrong choice of the smoothing parameter in the first step will lead to a deceptive serial correlation in the second step.

In the most general setting where no parametric shape is assumed for the mean or the correlation function, the model is essentially unidentifiable. In the following we will model the correlation structure parametrically. Specifically we assume that \(W \) depends on an unknown vector of parameters \(\tau \). Models for \(W^{-1} \) will be discussed in Section 5.3.

When there is no strong connection between the smoothing and correlation parameters, an iterative procedure as described earlier may be
FIGURE 5.3 For the first simulation, plots of (a) the true function (dashed lines), observations (circles), and the cubic spline fits (solid line) with $\log_{10}(n\lambda) = -3.5$, and (b) estimated ACF of residuals. For the second simulation, plots of (c) the true function (dashed lines), observations (circles), and the cubic spline fits (solid line) with GCV choice of the smoothing parameter, and (d) estimated ACF of residuals.

used to estimate f and W. See Sections 5.4.1 and 6.4 for examples. When there is a strong connection, it is helpful to estimate the smoothing and correlation parameters simultaneously. One may use the UBR, GCV, or GML criterion to estimate the smoothing and correlation parameters simultaneously. It was found that the GML method performs better than the UBR and GCV methods (Wang 1998b). Therefore, in the following, we present the implementation of the GML method only.

To compute the minimizers of the GML criterion (5.21), we now construct a corresponding LME model for the extended SS ANOVA model (5.1). Let $\Sigma_k = Z_kZ_k^T$, where Z_k is an $n \times m_k$ matrix with
\[m_k = \text{rank}(\Sigma_k). \]

Consider the following LME model

\[y = T\zeta + \sum_{k=1}^{q} Z_k u_k + \epsilon, \]

(5.27)

where \(\zeta \) is a \(p \)-dimensional vector of deterministic parameters, \(u_k \) are mutually independent random effects, \(u_k \sim N(0, \sigma^2 \theta_k I_{m_k}/n\lambda) \), \(I_{m_k} \) is the identity matrix of order \(m_k \), \(\epsilon \sim N(0, \sigma^2 W^{-1}) \), and \(u_k \) are independent of \(\epsilon \). It is not difficult to show that the spline estimate based on the PWLS is the BLUP estimate, and the GML criterion (5.21) is the REML criterion based on the LME model (5.27) (Opsomer, Wang and Yang 2001). Details for the more complicated semiparametric mixed-effects models will be given in Chapter 9. In the \texttt{sar} function, we first calculate \(Z_k \) through Cholesky decomposition. Then we calculate the REML (GML) estimates of \(\lambda \), \(\theta \) and \(\tau \) using the function \texttt{lme} in the \texttt{nlme} library by Pinheiro and Bates (2000).

5.2.5 Confidence Intervals

Consider the Bayes model defined in (5.19) and (5.20). Conditional on \(W \), it is not difficult to show that formulae for posterior means and covariances in Section 4.8 hold when \(M = \Sigma \theta + n\lambda I \) is replaced by \(M = \Sigma \theta + n\lambda W^{-1} \). Bayesian confidence intervals can be constructed similarly. When the matrix \(W \) involves unknown parameters \(\tau \), it is replaced by \(W(\hat{\tau}) \) in the construction of Bayesian confidence intervals. This simple plug-in approach does not account for the variation in estimating the covariance parameters \(\tau \). The bootstrap approach may also be used to construct confidence intervals. More research is necessary for inferences on the nonparametric function \(f \) as well as on parameters \(\tau \).

5.3 Variance and Correlation Structures

In this section we discuss commonly used models for the variance–covariance matrix \(W^{-1} \). The matrix \(W^{-1} \) can be decomposed as

\[W^{-1} = VCV, \]

where \(V \) is a diagonal matrix with positive diagonal elements, and \(C \) is a correlation matrix with all diagonal elements equal to one. The matrices \(V \) and \(C \) describe the variance and correlation, respectively.
The above decomposition allows us to develop separate models for the variance structure and correlation structure. We now describe structures available for the assist package. Details about these structures can be found in Pinheiro and Bates (2000).

Consider the variance structure first. Define general variance function as

$$\text{Var}(\epsilon_i) = \sigma^2 v^2(\mu_i, z_i; \zeta),$$

(5.28)

where v is a known variance function of the mean $\mu_i = E(y_i)$ and a vector of covariates z_i associated with the variance, and ζ is a vector of variance parameters. As in Pinheiro and Bates (2000), when v depends on μ_i, the pseudo-likelihood method will be used to estimate all parameters and the function f.

In the ssr function, a variance matrix (vector) or a model for the variance function is specified using the weights argument. The input to the weights argument may be the matrix W when it is known. Furthermore, when W is a known diagonal matrix, the diagonal elements may be specified as a vector by the weights argument. The input to the weights argument may also be a varFunc structure specifying a model for variance function v in (5.28). All varFunc objects available in the nlme package are available for the assist package. The varFunc structure is defined through the function $v(s; \zeta)$, where s can be either a variance covariate or the fitted value. Standard varFunc classes and their corresponding variance functions v are listed in Table 5.1. Two or more variance models may be combined using the varComb constructor.

<table>
<thead>
<tr>
<th>Class</th>
<th>$v(s; \zeta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>varFixed</td>
<td>$\sqrt{</td>
</tr>
<tr>
<td>varIdent</td>
<td>ζ_s, s is a stratification variable</td>
</tr>
<tr>
<td>varPower</td>
<td>$</td>
</tr>
<tr>
<td>varExp</td>
<td>$\exp(\zeta s)$</td>
</tr>
<tr>
<td>varConstPower</td>
<td>$\zeta_1 +</td>
</tr>
</tbody>
</table>

Next consider the correlation structure. Assume the general isotropic correlation structure

$$\text{cor}(\epsilon_i, \epsilon_j) = h(d(p_i, p_j); \rho),$$

(5.29)

where p_i and p_j are position vectors associated with observations i and j respectively; h is a known correlation function of the distance $d(p_i, p_j)$.
such that \(h(0; \rho) = 1 \); and \(\rho \) is a vector of the correlation parameters.

In the \texttt{ssr} function, correlation structures are specified as \texttt{corStruct} objects through the \texttt{correlation} argument. There are two common families of correlation structures: serial correlation structures for time series and spatial correlation structures for spatial data.

For time series data, observations are indexed by an one-dimensional position vector, and \(d(p_i, p_j) \) represents lags that take nonnegative integers. Therefore, serial correlation is determined by the function \(h(k; \rho) \) for \(k = 1, 2, \ldots \). Standard \texttt{corStruct} classes for serial correlation structures and their corresponding correlation functions \(h \) are listed in Table 5.2.

<table>
<thead>
<tr>
<th>Class</th>
<th>(h(k; \rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{corCompSymm}</td>
<td>(\rho)</td>
</tr>
<tr>
<td>\texttt{corSymm}</td>
<td>(\rho_k)</td>
</tr>
<tr>
<td>\texttt{corAR1}</td>
<td>(\rho^k)</td>
</tr>
<tr>
<td>\texttt{corARMA}</td>
<td>correlation function given in (5.30)</td>
</tr>
</tbody>
</table>

The classes \texttt{corCompSymm} and \texttt{corSymm} correspond to the compound symmetry and general correlation structures. An autoregressive-moving average (ARMA\((p,q)\)) model assumes that

\[
\epsilon_t = \sum_{i=1}^{p} \phi_i \epsilon_{t-i} + \sum_{j=1}^{q} \theta_j a_{t-j} + a_t,
\]

where \(a_t \) are iid random variables with mean zero and a constant variance, \(\phi_1, \ldots, \phi_p \) are autoregressive parameters, and \(\theta_1, \ldots, \theta_q \) are moving average parameters. The correlation function is defined recursively as

\[
h(k; \rho) = \begin{cases}
\phi_1 h(|k-1|; \rho) + \cdots + \phi_p h(|k-p|; \rho) + \\
\theta_1 \psi(k-1; \rho) + \cdots + \theta_q \psi(k-q; \rho), & k \leq q, \\
\phi_1 h(|k-1|; \rho) + \cdots + \phi_p h(|k-p|; \rho), & k > q,
\end{cases}
\]

where \(\rho = (\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q) \) and \(\psi(k; \rho) = \text{E}(\epsilon_{t-k}a_1)/\text{Var}(\epsilon_t) \).

The continuous AR(1) correlation function is defined as

\[
h(s; \rho) = \rho^s, \quad s \geq 0, \quad \rho \geq 0.
\]

The \texttt{corCAR1} constructor specifies the continuous AR(1) structure. For spatial data, locations \(\mathbf{p}_i \in \mathbb{R}^r \). Any well-defined distance such as
Euclidean \(d(p_i, p_j) = \left\{ \sum_{k=1}^{r} (p_{ik} - p_{jk})^2 \right\}^{1/2} \), Manhattan \(d(p_i, p_j) = \sum_{k=1}^{r} |p_{ik} - p_{jk}| \), and maximum distance \(d(p_i, p_j) = \max_{1 \leq k \leq r} |p_{ik} - p_{jk}| \) may be used. The correlation function structure is defined through the function \(h(s; \rho) \), where \(s \geq 0 \). Standard corStruct classes for spatial correlation structures and their corresponding correlation functions \(h \) are listed in Table 5.3. The function \(I(s < \rho) \) equals 1 when \(s < \rho \) and 0 otherwise. When desirable, the following correlation function allows a nugget effect:

\[
 h_{\text{nugg}}(s, c_0; \rho) = \begin{cases}
 (1 - c_0)h_{\text{cont}}(s; \rho), & s > 0, \\
 1, & s = 0,
 \end{cases}
\]

where \(h_{\text{cont}} \) is any standard correlation function that is continuous in \(s \) and \(0 < c_0 < 1 \) is a nugget effect.

Table 5.3 Standard corStruct classes for spatial correlation structures

<table>
<thead>
<tr>
<th>Class</th>
<th>(h(s; \rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>corExp</td>
<td>(\exp(-s/\rho))</td>
</tr>
<tr>
<td>corGaus</td>
<td>(\exp(-(s/\rho)^2))</td>
</tr>
<tr>
<td>corLin</td>
<td>((1 - s/\rho)I(s < \rho))</td>
</tr>
<tr>
<td>corRatio</td>
<td>(1/[1 + (s/\rho)^2])</td>
</tr>
<tr>
<td>corSpher</td>
<td>((1 - 1.5(s/\rho) + 0.5(s/\rho)^3)I(s < \rho))</td>
</tr>
</tbody>
</table>

5.4 Examples

5.4.1 Simulated Motorcycle Accident — Revisit

Plot of observations in Figure 3.8 suggests that variances may change over time. For the partial spline fit to model (3.53), we compute squared residuals and plot the logarithm of squared residuals over time in Figure 5.4(a). Cubic spline fit to the logarithm of squared residuals in Figure 5.4(a) indicates that the constant variance assumption may be violated. We then fit model (3.53) again using PWLS with weights fixed as the estimated variances:

```r
> r <- residuals(mcycle.ps.fit2); y <- log(r**2)
```
> mcycle.v <- ssr(y~x, cubic(x), spar='m')
> update(mcycle.ps.fit2, weights=exp(mcycle.v$fit))
> predict(mcycle.ps.fit3,
newdata=data.frame(x=grid, s1=(grid-t1)*(grid>t1),
s2=(grid-t2)*(grid>t2), s3=(grid-t3)*(grid>t3)))

FIGURE 5.4 Motorcycle data, plots of (a) logarithm of the squared residuals (circles) based on model (3.53), and the cubic spline fit (line) to logarithm of the squared residuals; and (b) observations (circles), new PWLS fit (line), and 95% Bayesian confidence intervals (shaded region).

The PWLS fit and 95% Bayesian confidence intervals are shown in 5.4(b). The impact of the unequal variances is reflected in the widths of confidence intervals. The two-step approach adapted here is crude, and the variation in the estimation of the variance function has been ignored in the construction of the confidence intervals. Additional methods for estimating the mean and variance functions will be discussed in Section 6.4.

5.4.2 Ozone in Arosa — Revisit

Figure 2.2 suggests that the variances may not be a constant. Based on fit to the trigonometric spline model (2.75), we calculate residual variances for each month and plot them on the logarithm scale in Figure 5.5(a). It is obvious that variations depend on the time of the year. It seems that a simple sinusoidal function can be used to model the variance function.
Spline Smoothing with Heteroscedastic and/or Correlated Errors

\[
> v <- \text{sapply(split(arosa.ls.fit$resi,Arosa$month),var)} \\
> a <- \text{sort(unique(Arosa$x))} \\
> b <- \text{lm(log(v)-sin(2*pi*a)+cos(2*pi*a))} \\
> \text{summary(b)} \\
\]

... Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 5.43715 | 0.05763 | 94.341 | 8.57e-15 *** |
| sin(2 * pi * a) | 0.71786 | 0.08151 | 8.807 | 1.02e-05 *** |
| cos(2 * pi * a) | 0.49854 | 0.08151 | 6.117 | 0.000176 *** |

Residual standard error: 0.1996 on 9 degrees of freedom
Multiple R-squared: 0.9274, Adjusted R-squared: 0.9113
F-statistic: 57.49 on 2 and 9 DF, p-value: 7.48e-06

FIGURE 5.5 Aro sa data, plots of (a) logarithm of residual variances (circles) based on the periodic spline fit in Section 2.7, the sinusoidal fit to logarithm of squared residuals (dashed line), and the fit from model (5.31) (solid line); and (b) observations (dots), the new PWLS fit (solid line), and 95% Bayesian confidence intervals (shaded region).

The fit of the simple sinusoidal model to the log variance is shown in Figure 5.5(a). We now assume the following variance function for the trigonometric spline model (2.75):

\[
v(x) = \exp(\zeta_1 \sin 2\pi x + \zeta_2 \cos 2\pi x),
\]

and fit the model as follows:
> arosa.ls.fit1 <- ssr(thick~sin(2*pi*x)+cos(2*pi*x),
 rk=lspline(x,type='sine1'), spar='m', data=Arosa,
 weights=varComb(varExp(form=~sin(2*pi*x)),
 varExp(form=~cos(2*pi*x))))

> summary(arosa.ls.fit1)

...
GML estimate(s) of smoothing parameter(s) : 3.675780e-09
Equivalent Degrees of Freedom (DF): 6.84728
Estimate of sigma: 15.22466
Combination of:
Variance function structure of class varExp representing
 expon
0.3555942
Variance function structure of class varExp representing
 expon
0.2497364

The estimated variance parameters, 0.3556 and 0.2497, are very close to (up to a scale of 2 by definition) those in the sinusoidal model based on residual variances — 0.7179 and 0.4985. The fitted variance function is plotted in Figure 5.5(a) which is almost identical to the fit based on residual variances. Figure 5.5(b) plots the trigonometric spline fit to the mean function with 95% Bayesian confidence intervals. Note that these confidence intervals are conditional on the estimated variance parameters. Thus they may have smaller coverage than the nominal value since variation in the estimation of variance parameters is not counted. Nevertheless, we can see that unequal variances are reflected in the widths of these confidence intervals.

Observations close in time may be correlated. We now consider a first-order autoregressive structure for random errors. Since some observations are missing, we use the continuous AR(1) correlation structure $h(s, \rho) = \rho^s$, where s represents distance in terms of calendar time between observations. We refit model (2.75) using the variance structure (5.31) and continuous AR(1) correlation structure as follows:

> Arosa$time <- Arosa$month+12*Arosa$year-1
> arosa.ls.fit2 <- update(arosa.ls.fit1,
 corr=corCAR1(form="time"))
> summary(arosa.ls.fit2)

...
GML estimate(s) of smoothing parameter(s) : 3.575283e-09
Equivalent Degrees of Freedom (DF): 7.327834
Estimate of sigma: 15.31094
Correlation structure of class corCAR1 representing
Where the variable \textit{time} represents the continuous calendar time in months.

5.4.3 Beveridge Wheat Price Index

The Beveridge data contain the time series of annual wheat price index from 1500 to 1869. The time series of price index on the logarithmic scale is shown in Figure 5.6.

![Figure 5.6](image)

FIGURE 5.6 Beveridge data, observations (circles), the cubic spline fit under the assumption of independent random errors (dashed line), and the cubic spline fit under AR(1) correlation structure (solid line) with 95\% Bayesian confidence intervals (shaded region).
Let x be the year scaled into the interval $[0,1]$ and y be the logarithm of price index. Consider the following nonparametric regression model

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

(5.32)

where $f \in W_2^2[0,1]$ and ϵ_i are random errors. Under the assumption that ϵ_i are independent with a common variance, model (5.32) can be fitted as follows:

```r
> library(tseries); data(bev)
> y <- log(bev); x <- seq(0,1,len=length(y))
> bev.fit1 <- ssr(y~x, rk=cubic(x))
> summary(bev.fit1)
```

```
GCV estimate(s) of smoothing parameter(s) : 3.032761e-13
Equivalent Degrees of Freedom (DF): 344.8450
Estimate of sigma: 0.02865570
```

where the GCV method was used to select the smoothing parameter. The estimate of the smoothing parameter is essentially zero, which indicates that the cubic spline fit interpolates observations (dashed line in Figure 5.6). The undersmoothing is likely caused by the autocorrelation in time series. Now consider an AR(1) correlation structure for random errors:

```r
> bev.fit2 <- update(bev.fit1, spar=''m'', correlation=corAR1(form=~1))
> summary(bev.fit2)
```

```
GML estimate(s) of smoothing parameter(s) : 1.249805e-06
Equivalent Degrees of Freedom (DF): 8.091024
Estimate of sigma: 0.2243519
Correlation structure of class corAR1 representing
Phi
0.6936947
```

Estimate of f and 95% Bayesian confidence intervals under AR(1) correlation structure are shown in Figure 5.6 as the solid line and the shaded region.

5.4.4 Lake Acidity

The lake acidity data contain measurements of 112 lakes in the southern Blue Ridge mountains area. It is of interest to investigate the dependence of the water pH level on calcium concentration and geological location. To match notations in Chapter 4, we relabel calcium concentration t_1
as variable x_1, and geological location x_1 (latitude) and x_2 (longitude) as variables x_{21} and x_{22}, respectively. Let $x_2 = (x_{21}, x_{22})$.

First, we fit an one-dimensional thin-plate spline to the response variable ph using one independent variable x_1 (calcium):

$$ ph(x_{1i}) = f(x_{1i}) + \epsilon_i, \quad (5.33) $$

where $f \in W_2^2(\mathbb{R})$, and ϵ_i are zero-mean independent random errors with a common variance.

```r
> data(acid)
> acid$x21 <- acid$x1; acid$x22 <- acid$x2
> acid$x1 <- acid$t1
> acid.tp.fit1 <- ssr(ph~x1, rk=tp(x1), data=acid)
> summary(acid.tp.fit1)
```

GCV estimate(s) of smoothing parameter(s) : 3.433083e-06
Equivalent Degrees of Freedom (DF): 8.20945
Estimate of sigma: 0.281299
Number of Observations: 112

```r
> anova(acid.tp.fit1)
```

Testing H_0: f in the NULL space

<table>
<thead>
<tr>
<th>test.value</th>
<th>simu.size</th>
<th>simu.p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP 0.003250714</td>
<td>100</td>
<td>0.08</td>
</tr>
<tr>
<td>GCV 0.008239078</td>
<td>100</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Both p-values from the LMP and GCV tests suggest that the departure from a straight line model is borderline significant. The estimate of the function f in model (5.33) is shown in the left panel of Figure 5.7.

Observations of the pH level close in geological locations are often correlated. Suppose that we want to model potential spatial correlation among random errors in model (5.33) using the exponential spatial correlation structure with nugget effect for the location variable $x_2 = (x_{21}, x_{22})$. That is, we assume that

$$ h_{nugg}(s, c_0, \rho) = \begin{cases} (1 - c_0) \exp(-s/\rho), & s > 0, \\ 1, & s = 0, \end{cases} $$

where c_0 is the nugget effect and s is the Euclidean distance between two geological locations. Model (5.33) with the above correlation structure can be fitted as follows:
FIGURE 5.7 Lake acidity data, the left panel includes observations (circles), the fit from model (5.33) (solid line), the fit from model (5.33) with the exponential spatial correlation structure (dashed line), and estimate of the constant plus main effect of x_1 from model (5.36) (dotted line); the right panel includes estimate of the main effect of x_2 from model (5.36).

> acid.tp.fit2 <- update(acid.tp.fit1, spar='m',
 corr=corExp(form=~x21+x22,nugget=T))
> summary(acid.tp.fit2)

...
GML estimate(s) of smoothing parameter(s) : 53310.63
Equivalent Degrees of Freedom (DF): 2
Estimate of sigma: 0.3131702
Correlation structure of class corExp representing
 range nugget
 0.02454532 0.62321744

The GML estimate of the smoothing parameter is large, and the spline estimate is essentially a straight line (left panel of Figure 5.7). The smaller smoothing parameter in the first fit with independence assumption might be caused by the spatial correlation. Equivalent degrees of freedom for f have been reduced from 8.2 to 2.

We can also model the effect of geological location directly in the mean function. That is to consider the mean pH level as a bivariate function of x_1 (calcium) and x_2 (geological location):

$$ \text{ph}(x_{i1}, x_{i2}) = f(x_{i1}, x_{i2}) + \epsilon_i, \quad (5.34) $$

where ϵ_i are zero-mean independent random errors with a common vari-
Spline Smoothing with Heteroscedastic and/or Correlated Errors

We fit model (5.36) as follows:

\[f = \{ A_1^{(1)} + A_2^{(1)} + A_3^{(1)} \} \{ A_4^{(2)} + A_5^{(2)} + A_6^{(2)} \} \]

\[= A_1^{(1)} A_2^{(2)} f + A_2^{(1)} A_1^{(2)} f + A_3^{(1)} A_4^{(2)} f \]

\[+ A_3^{(1)} A_2^{(2)} f + A_4^{(1)} A_5^{(2)} f + A_5^{(1)} A_2^{(2)} f \]

\[+ A_4^{(1)} A_5^{(2)} f + A_1^{(1)} A_3^{(2)} f + A_3^{(1)} A_4^{(2)} f \]

\[\triangleq \mu + \beta_1 \tilde{\phi}_{12}(x_1) + \beta_2 \tilde{\phi}_{22}(x_2) + \beta_3 \tilde{\phi}_{23}(x_1) + \beta_4 \tilde{\phi}_{12}(x_1) \tilde{\phi}_{22}(x_2) \]

\[+ \beta_5 \tilde{\phi}_{12}(x_1) \tilde{\phi}_{23}(x_2) + f_1^*(x_1) + f_2^*(x_2) + f_{12}^*(x_1, x_2) \]

\[+ f_{12}^*(x_1, x_2) + f_{12}^*(x_1, x_2). \quad (5.35) \]

Due to small sample size, we ignore all interactions and consider the following additive model

\[y_i = \mu + \beta_1 \tilde{\phi}_{12}(x_{i1}) + \beta_2 \tilde{\phi}_{22}(x_{i2}) + \beta_3 \tilde{\phi}_{23}(x_{i2}) + f_1^*(x_{i1}) + f_2^*(x_{i2}) + \epsilon_i, \quad (5.36) \]

where \(\epsilon_i \) are zero-mean independent random errors with a common variance. We fit model (5.36) as follows:
\begin{verbatim}
> acid.ssanova.fit <- ssr(ph~x1+x21+x22,
 rk=list(tp(x1), tp(list(x21, x22))),
 data=acid, spar=''m''
> summary(acid.ssanova.fit)
...
GML estimate(s) of smoothing parameter(s) : 4.819636e-01
 2.870235e-07
Equivalent Degrees of Freedom (DF): 8.768487
Estimate of sigma: 0.2560684
\end{verbatim}

The estimate of the main effect of x_1 plus the constant, $\mu + \beta_1 \phi_1(x_1) + f_1^\tau(x_1)$, is shown in Figure 5.7(a). This estimate is almost identical to that from model (5.33) with the exponential spatial correlation structure. The estimate of the main effect of x_2 is shown in the right panel of Figure 5.7.

An alternative approach to modeling the effect of geological location using mixed-effects will be discussed in Section 9.4.2.
Chapter 6

Generalized Smoothing Spline ANOVA

6.1 Generalized SS ANOVA Models

Generalized linear models (GLM) (McCullagh and Nelder 1989) provide a unified framework for analysis of data from exponential families. Denote (x_i, y_i) for $i = 1, \ldots, n$ as independent observations on independent variables $x = (x_1, \ldots, x_d)$ and dependent variable y. Assume that y_i are generated from a distribution in the exponential family with the density function

$$g(y_i; f_i, \phi) = \exp \left\{ \frac{y_i h(f_i) - b(f_i)}{a_i(\phi)} + c(y_i, \phi) \right\},$$

where $f_i = f(x_i)$, $h(f_i)$ is a monotone transformation of f_i known as the canonical parameter, and ϕ is a dispersion parameter. The function f models the effect of independent variables x. Denote $\mu_i = E(y_i)$, G_c as the canonical link such that $G_c(\mu_i) = h(f_i)$, and G as the link function such that $G(\mu_i) = f_i$. Then $h = G_c \circ G^{-1}$, and it reduces to the identity function when the canonical link is chosen for G. The last term $c(y_i, \phi)$ in (6.1) is independent of f.

A GLM assumes that $f(x) = x^T \beta$. Similar to the linear models for Gaussian data, the parametric GLM may be too restrictive for some applications. We consider the nonparametric extension of the GLM in this chapter. In addition to providing more flexible models, the nonparametric extension also provides model building and diagnostic methods for GLMs.

Let the domain of each covariate x_k be an arbitrary set X_k. Consider f as a multivariate function on the product domain $X = X_1 \times X_2 \times \cdots \times X_d$. The SS ANOVA decomposition introduced in Chapter 4 may be applied to construct candidate model spaces for f. In particular, we will assume that $f \in M$, where

$$M = \mathcal{H}^0 \oplus \mathcal{H}^1 \oplus \cdots \oplus \mathcal{H}^q.$$
is an SS ANOVA model space defined in (4.30), \(\mathcal{H}^0 = \text{span}\{\phi_1, \ldots, \phi_p\} \) is a finite dimensional space collecting all functions that are not penalized, and \(\mathcal{H}^j \) for \(j = 1, \ldots, q \) are orthogonal RKHS’s with RKs \(R^j \). The same notations in Chapter 4 will be used in this Chapter.

We assume the same density function (6.1) for \(y_i \). However, for generality, we assume that \(f \) is observed through some linear functionals. Specifically, \(f_i = L_i f \), where \(L_i \) are known bounded linear functionals.

6.2 Estimation and Inference

6.2.1 Penalized Likelihood Estimation

Assume that \(a_i(\phi) = a(\phi)/\varpi_i \) for \(i = 1, \ldots, n \) where \(\varpi_i \) are known constants. Denote \(\sigma^2 = a(\phi), \ y = (y_1, \ldots, y_n)^T \) and \(f = (f_1, \ldots, f_n)^T \).

Let

\[
l_i(f_i) = \varpi_i \{b(f_i) - y_i h(f_i)\}, \quad i = 1, \ldots, n,
\]

and

\[
l(f) = \sum_{i=1}^n l_i(f_i). \quad (6.2)
\]

Then the log-likelihood

\[
\sum_{i=1}^n \log g(y_i; f_i, \phi) = \sum_{i=1}^n \left\{ \frac{y_i h(f_i) - b(f_i)}{a_i(\phi)} + c(y_i, \phi) \right\}
\]

\[
= -\frac{1}{\sigma^2} l(f) + C, \quad (6.3)
\]

where \(C \) is independent of \(f \). Therefore, up to an additive and a multiplying constant, \(l(f) \) is the negative log-likelihood. Note that \(l(f) \) is independent of the dispersion parameter.

For a GLM, the MLE of parameters \(\beta \) are the maximizers of the log-likelihood. For a generalized SS ANOVA model, as in the Gaussian case, a penalty term is necessary to avoid overfitting. We will use the same form of penalty as in Chapter 4. Specifically, we estimate \(f \) as the solution to the following penalized likelihood (PL)

\[
\min_{f \in \mathcal{M}} \left\{ l(f) + \frac{n}{2} \sum_{j=1}^q \lambda_j \|P_j f\|^2 \right\}, \quad (6.4)
\]

where \(P_j \) is the orthogonal projector in \(\mathcal{M} \) onto \(\mathcal{H}^j \), and \(\lambda_j \) are smoothing parameters. The multiplying term \(1/\sigma^2 \) is absorbed into smoothing parameters, and the constant \(C \) is dropped since it is independent of \(f \).

The multiplying constant \(n/2 \) is added such that the PL reduces to the
PLS (4.32) for Gaussian data. Under the new inner product defined in (4.33), the PL can be rewritten as
\[
\min_{f \in \mathcal{M}} \left\{ l(f) + \frac{n}{2} \lambda \| P_1^* f \|^2 \right\},
\] (6.5)
where \(\lambda_j = \lambda/\theta_j \) and \(P_1^* = \sum_{j=1}^q P_j \) is the orthogonal projection in \(\mathcal{M} \) onto \(\mathcal{H}_1 = \oplus_{j=1}^q \mathcal{H}^j \). Note that the RK of \(\mathcal{H}_1 \) under the new inner product is \(R_1^* = \sum_{j=1}^q \theta_j R^j \).

It is easy to check that \(l(f) \) is convex in \(f \) under the canonical link. In general, we assume that \(l(f) \) is convex in \(f \) and has a unique minimizer in \(\mathcal{H}_0 \). Then the PL (6.5) has a unique minimizer (Theorem 2.9 in Gu (2002)). We now show the Kimeldorf–Wahba representer theorem holds.

Let \(R_0^* \) be the RK of \(\mathcal{H}_0 \) and \(R = R_0 + R_1^* \). Let \(\eta_i \) be the representer associated with \(L_i \). Then, from (2.12),
\[
\eta_i(x) = L_{i(z)} R(x, z) = L_{i(z)} R_0^0 + L_{i(z)} R_1^* = \delta_i(x) + \xi_i(x).
\]
That is, the representers \(\eta_i \) for \(L_i \) belong to the finite dimensional subspace \(\mathcal{S} = \mathcal{H}_0 \oplus \text{span}\{\xi_1, \ldots, \xi_n\} \). Let \(\mathcal{S}^c \) be the orthogonal complement of \(\mathcal{S} \). Any \(f \in \mathcal{H} \) can be decomposed into \(f = \varsigma_1 + \varsigma_2 \), where \(\varsigma_1 \in \mathcal{S} \) and \(\varsigma_2 \in \mathcal{S}^c \). Then we have
\[
L_i f = (\eta_i, f) = (\eta_i, \varsigma_1) + (\eta_i, \varsigma_2) = (\eta_i, \varsigma_1) = L_i \varsigma_1.
\]
Consequently, for any \(f \in \mathcal{H} \), the PL (6.5) satisfies
\[
\sum_{i=1}^n l_i(L_i f) + \frac{n}{2} \lambda \| P_1^* f \|^2
\geq \sum_{i=1}^n l_i(L_i \varsigma_1) + \frac{n}{2} \lambda \| P_1^* \varsigma_1 \|^2,
\]
where equality holds iff \(\| P_1^* \varsigma_2 \| _\star = \| \varsigma_2 \| _\star = 0 \). Thus, the minimizer of the PL falls in the finite dimensional space \(\mathcal{S} \), which can be represented as
\[
\hat{f}(x) = \sum_{i=1}^p d_i \phi_i(x) + \sum_{i=1}^n c_i \xi_i
\geq \sum_{i=1}^p d_i \phi_i(x) + \sum_{i=1}^n c_i \sum_{j=1}^q \theta_j L_{i(z)} R^j(x, z).
\] (6.6)
For simplicity of notation, the dependence of \(\hat{f} \) on the smoothing parameters \(\lambda \) and \(\theta = (\theta_1, \ldots, \theta_q) \) is not expressed explicitly. Let \(T = \{ L_i \theta, \Sigma \}_1^r \) and \(\Sigma_k = \{ L_i L_j R_k \}_1^r \) for \(k = 1, \ldots, q \) and \(\Sigma \theta = \theta_1 \Sigma_1 + \cdots + \theta_q \Sigma_q \). Let \(d = (d_1, \ldots, d_p) \) and \(c = (c_1, \ldots, c_n) \). Denote \(\hat{f} = (L_1 \hat{f}, \ldots, L_n \hat{f})^T \). Then \(\hat{f} = T d + \Sigma \theta c \). Note that \(\|P^T \hat{f}\|^2 = c^T \Sigma \theta c \).

Substituting (6.6) into (6.5), we need to solve \(c \) and \(d \) by minimizing

\[
I(c, d) = l(T d + \Sigma \theta c) + \frac{n}{2} \lambda c^T \Sigma \theta c. \tag{6.7}
\]

Except for the Gaussian distribution, the function \(l(f) \) is not quadratic and (6.7) cannot be solved directly. For fixed \(\lambda \) and \(\theta \), we will apply the Newton–Raphson procedure to compute \(c \) and \(d \). Let \(u_i = dl_i/df \) and \(w_i = d^2 l_i/df^2 \), where \(f_i = L_i \hat{f} \). Let \(u^T = (u_1, \ldots, u_n)^T \) and \(W = \text{diag}(w_1, \ldots, w_n) \). Then

\[
\begin{align*}
\frac{\partial I}{\partial c} &= \Sigma \theta u + n \lambda \Sigma \theta c, \\
\frac{\partial I}{\partial d} &= T^T u, \\
\frac{\partial^2 I}{\partial c \partial c^T} &= \Sigma \theta W \Sigma \theta + n \lambda \Sigma \theta, \\
\frac{\partial^2 I}{\partial c \partial d^T} &= \Sigma \theta WT, \\
\frac{\partial^2 I}{\partial d \partial d^T} &= T^T WT.
\end{align*}
\]

The Newton–Raphson procedure iteratively solves the linear system

\[
\begin{pmatrix}
\Sigma \theta W \Sigma \theta + n \lambda \Sigma \theta \\
T^T W \Sigma \theta
\end{pmatrix}
\begin{pmatrix}
c - c_* \\
d - d_*
\end{pmatrix}
= \begin{pmatrix}
- \Sigma \theta u_* - n \lambda \Sigma \theta c_* \\
- T^T u_*
\end{pmatrix}, \tag{6.8}
\]

where the subscript minus indicates quantities evaluated at the previous Newton–Raphson iteration. Equations in (6.8) can be rewritten as

\[
(S_\theta W_\Sigma \theta + n \lambda \Sigma \theta) c + \Sigma \theta W_\Sigma \theta d = \Sigma \theta W_\Sigma \theta \hat{f}_* - \Sigma \theta u_* \\
T^T W_\Sigma \theta c + T^T W_\Sigma \theta d = T^T W_\Sigma \theta \hat{f}_* - T^T u_* \tag{6.9}
\]

where \(\hat{f}_* = T d_* + \Sigma \theta c_* \). As discussed in Section 2.4, it is only necessary to derive one set of solutions. Let \(\bar{y} = \hat{f}_* - W_*^{-1} u_* \). It is easy to see that a solution to

\[
(S_\theta + n \lambda W_*^{-1}) c + T d = \bar{y}, \\
T^T c = 0, \tag{6.10}
\]

respectively.
is also a solution to (6.9). Note that W^* is known at the current Newton–Raphson iteration. Since equations in (6.10) have the same form as those in (5.6), then methods in Section 5.2.1 can be used to solve (6.10). Furthermore, (6.10) corresponds to the minimizer of the following PWLS problem:

$$
\frac{1}{n} \sum_{i=1}^{n} w_i (\hat{y}_i - f_i)^2 + \sum_{j=1}^{q} \lambda_j \|P_j f\|^2,
$$

(6.11)

where \hat{y}_i is the ith element of \hat{y}. Therefore, at each iteration, the Newton–Raphson procedure solves the PWLS criterion with working variables \hat{y}_i and working weights $w_i - \cdot$. Consequently, the procedure can be regarded as iteratively reweighted PLS.

6.2.2 Selection of Smoothing Parameters

With canonical link such that $h(f) = f$, we have $E(y_i) = b'(f_i)$, $\text{Var}(y_i) = b''(f_i) a_i(\phi)$, $u_i = \varphi_i \{b'(f_i) - y_i\}$, and $w_i = \varphi_i b''(f_i)$. Therefore, $E(u_i/w_i) = 0$ and $\text{Var}(u_i/w_i) = \sigma^2 w_i^{-1}$. Consequently, when \hat{f}_- is close to f and under some regularity conditions, it can be shown (Wang 1994, Gu 2002) that the working variables approximately have the same structure as in (5.1)

$$
\hat{y}_i = L_i f + \epsilon_i + o_p(1),
$$

(6.12)

where ϵ_i has mean 0 and variance $\sigma^2 w_i^{-1}$. The Newton–Raphson procedure essentially reformulates the problem to model f on working variables at each iteration.

From the above discussion and note that W^* is known at the current Newton–Raphson iteration, we can use the UBR, GCV, and GML methods discussed in Section 5.2.3 to select smoothing parameters at each step of the Newton–Raphson procedure. Since working data are reformulated at each iteration, the target criteria of the above iterative smoothing parameter selection methods change throughout the iteration. Therefore, the overall target criteria of these iterative methods are not explicitly defined. A justification for the UBR criterion can be found in Gu (2002).

One practical problem with the iterative methods for selecting smoothing parameters is that they are not guaranteed to converge. Nevertheless, extensive simulations indicate that, in general, the above algorithm works reasonably well in practice (Wang 1994, Wang, Wahba, Chappell and Gu 1995).

Nonconvergence may become a serious problem for certain applications (Liu, Tong and Wang 2007). Some direct noniterative methods
for selecting smoothing parameters have been proposed. For Poisson and gamma distributions, it is possible to derive unbiased estimates of the symmetrized Kullback–Leibler discrepancy (Wong 2006, Liu et al. 2007). Xiang and Wahba (1996) proposed a direct GCV method. Details about the direct GCV method can be found in Gu (2002). A direct GML method will be discussed in Section 6.2.4. These direct methods are usually more computationally intensive. They have not been implemented in the current version of the assist package. It is not difficult to write R functions to implement these direct methods. A simple implementation of the direct GML method for gamma distribution will be given in Sections 6.4 and 6.5.3.

6.2.3 Algorithm and Implementation

The whole procedure discussed in Sections 6.2.1 and 6.2.2 is summarized in the following algorithm.

Algorithm for generalized SS ANOVA models

1. Compute matrices T and Σ_k for $k = 1, \ldots, q$, and set an initial value for f.

2. Compute u_i, W, $\tilde{T} = W^{1/2}T$, $\tilde{\Sigma}_k = W^{1/2}\Sigma_k W^{1/2}$ for $k = 1, \ldots, q$, and $\tilde{y} = W^{1/2}\tilde{y}$, and fit the transformed data with smoothing parameters selected by the UBR, GCV, or GML method.

3. Iterate step 2 until convergence.

The above algorithm is easy to implement. All we need to do is to compute quantities u_i and w_i. We now compute these quantities for some special distributions.

First consider logistic regression with logit link function. Assume that $y \sim \text{Binomial}(m, p)$ with density function

$$g(y) = \binom{m}{y} p^y (1-p)^{m-y}, \quad y = 0, \ldots, m.$$

Then $\sigma^2 = 1$ and $l_i = -y_i f_i + m_i \log(1 + \exp(f_i))$, where $f_i = \log(p_i/(1-p_i))$. Consequently, $u_i = -y_i + m_i p_i$ and $w_i = m_i p_i (1 - p_i)$. Note that binary data is a special case with $m_i = 1$.

Next consider Poisson regression with log-link function. Assume that $y \sim \text{Poisson}(\mu)$ with density function

$$g(y) = \frac{1}{y!} \mu^y \exp(-\mu), \quad y = 0, 1, \ldots.$$
Then \(\sigma^2 = 1 \) and \(l_i = -y_if_i + \exp(f_i) \), where \(f_i = \log \mu_i \). Consequently, \(u_i = -y_i + \mu_i \) and \(w_i = \mu_i \).

Last consider gamma regression with log-link function. Assume that \(y \sim \text{Gamma}(\alpha, \beta) \) with density function

\[
g(y) = \frac{1}{\Gamma(\alpha)} \beta^\alpha y^{\alpha-1} \exp \left(-\frac{\beta y}{\mu} \right), \quad y > 0,
\]

where \(\alpha > 0 \) and \(\beta > 0 \) are shape and scale parameters. We are interested in modeling the mean \(\mu \equiv E(y) \) as a function of independent variables. We assume that the shape parameter does not depend on independent variables. Note that \(\mu = \alpha/\beta \). The density function may be reparametrized as

\[
g(y) = \frac{\alpha^\alpha}{\Gamma(\alpha)\mu^\alpha} y^{\alpha-1} \exp \left(-\frac{\alpha y}{\mu} \right), \quad y > 0.
\]

The canonical parameter \(-\mu^{-1} \) is negative. To avoid this constraint, we adopt the log-link. Then \(\sigma^2 = \alpha^{-1} \) and \(l_i = y_i \exp(-f_i) + f_i \), where \(f_i = \log \mu_i \). Consequently, \(u_i = -y_i/\mu_i + 1 \) and \(w_i = y_i/\mu_i \). Since \(w_i \) are nonnegative, then \(l(f) \) is a convex function of \(f \).

For the binomial and the Poisson distributions, the dispersion parameter \(\sigma^2 \) is fixed as \(\sigma^2 = 1 \). For the gamma distribution, the dispersion parameter \(\sigma^2 = \alpha^{-1} \). Since this constant has been separated from the definition of \(l_i \), then we can set \(\sigma^2 = 1 \) in the UBR criterion. Therefore, for binomial, Poisson, and gamma distributions, the UBR criterion reduces to

\[
\text{UBR}(\lambda, \theta) = \frac{1}{n} \| (I - \hat{H}) \hat{y} \|^2 + \frac{2}{n} \text{tr} \hat{H},
\]

where \(\hat{H} \) is the hat matrix associated with the transformed data.

In general, the weighted average of residuals

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} w_i \left(\frac{u_i - w_i}{u_i - w_i} \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{u_i - w_i}{w_i} \right)^2
\]

provides an estimate of \(\sigma^2 \) at the current iteration when it is unknown. Then the UBR criterion reduces to

\[
\text{UBR}(\lambda, \theta) = \frac{1}{n} \| (I - \hat{H}) \hat{y} \|^2 + \frac{2\hat{\sigma}^2}{n} \text{tr} \hat{H}.
\]

There are two versions of the UBR criterion given in equations (6.13) and (6.15). The first version is favorable when \(\sigma^2 \) is known.
The above algorithm is implemented in the `ssr` function for binomial, Poisson, and gamma distributions based on a collection of Fortran subroutines called GRKPACK (Wang 1997). The specific distribution is specified by the `family` argument. The method for selecting smoothing parameters is specified by the argument `spar` with “u”, “v”, and “m” representing UBR, GCV, and GML criteria defined in (6.15), (5.25) and (5.26), respectively. The UBR method with fixed dispersion parameter (6.13) is specified as `spar='u'` together with the option `varht` for specifying the fixed dispersion parameter. Specifically, for binomial, Poisson and gamma distributions with $\sigma^2 = 1$, the combination `spar='u'` and `varht=1` is used.

6.2.4 Bayes Model, Direct GML and Approximate Bayesian Confidence Intervals

Suppose observations y_i are generated from (6.1) with $f_i = \mathcal{L}_i f$. Assume the same prior for f as in (4.42):

$$F(x) = \sum_{\nu=1}^{p} \zeta_\nu \phi_\nu(x) + \delta^2 \sum_{j=1}^{q} \sqrt{\theta_j} U_j(x),$$

where $\zeta_\nu \sim N(0, \kappa)$; $U_j(x)$ are independent, zero-mean Gaussian stochastic processes with covariance function $R^j(x, z)$; ζ_ν and $U_j(x)$ are mutually independent; and κ and δ are positive constants. Conditional on $\zeta = (\zeta_1, \ldots, \zeta_p)^T$, $f|\zeta \sim N(T\zeta, \delta \Sigma \theta)$. Letting $\kappa \to \infty$ and integrating out ζ, Gu (1992) showed that the marginal density of f

$$p(f) \propto \exp \left\{ -\frac{1}{2\delta^2} f^T \left(\Sigma^+_\theta - \Sigma^+_\theta (T^T \Sigma^+_\theta T)^{-1} T^T \Sigma^+_\theta \right) f \right\},$$

where Σ^+_θ is the Moore–Penrose inverse of $\Sigma \theta$. The marginal density of y,

$$p(y) = \int p(y|f)p(f)df,$$

usually does not have a closed form since, except for the Gaussian distribution, the log-likelihood $\log p(y|f)$ is not quadratic in f. Note that

$$\log p(y|f) = \sum_{i=1}^{n} \log g(y_i; f_i, \phi) = -\frac{1}{\sigma^2} l(f) + C.$$
shown (Liu et al. 2005) that (6.19) is equivalent to
\[l(f) \approx \frac{1}{2} (f - y_c)^TW_c(f - y_c) + l(\hat{f}) - \frac{1}{2} u_c^TW_c^{-1}u_c. \quad (6.18) \]

Note that \(\log p(f) \) is quadratic in \(f \). Then it can be shown that, applying
approximation (6.18), the marginal density of \(y \) in (6.17) is approximately proportional to (Liu, Meiring and Wang 2005)
\[
\begin{align*}
p(y) &\propto |W_c|^{-\frac{1}{2}} |V|^{-\frac{1}{2}} |T^TV^{-1}T^{-1}|^{-\frac{1}{2}} p(y|f) \exp \left\{ \frac{1}{2\sigma^2} u_c^TW_c^{-1}u_c \right\} \\
&\times \exp \left\{ -\frac{1}{2} y_c^T (V^{-1} - V^{-1}T(T^TV^{-1}T)^{-1}T^TV^{-1}) y_c \right\}, \quad (6.19)
\end{align*}
\]

where \(V = \delta^2 V_0 + \sigma^2 W_c^{-1} \). When \(\Sigma \theta \) is nonsingular, \(\hat{f} \) is the maximizer of the integrand \(p(y|f)p(f) \) in (6.17) (Gu 2002). In this case the foregoing approximation is simply the Laplace approximation.

Let \(y_c = W_c^{1/2} y_u \), \(\hat{\Sigma}_\theta = W_c^{1/2} \Sigma_\theta W_c^{1/2} \), \(\hat{T} = W_c^{1/2} T \), and the QR decomposition of \(\hat{T} \) be \(\hat{Q}_2 \hat{R} \). Let \(U E U^T \) be the eigendecomposition of \(\hat{Q}_2^T \hat{\Sigma}_\theta \hat{Q}_2 \), where \(E = \text{diag}(\eta_1, \ldots, \eta_{n-p}) \), \(\eta_1 \geq \eta_2 \geq \ldots \geq \eta_{n-p} \) are eigenvalues. Let \(z = (z_1, \ldots, z_{n-p})^T = U^T \hat{Q}_2 \hat{y}_c \). Then it can be shown (Liu et al. 2005) that (6.19) is equivalent to
\[
\begin{align*}
p(y) &\propto |\hat{R}|^{-1} p(y|f) \exp \left\{ -\frac{1}{2\sigma^2} u_c^TW_c^{-1}u_c \right\} \\
&\times \prod_{\nu=1}^{n-p} (\eta_\nu + \sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \sum_{\nu=1}^{n-p} \frac{z_\nu^2}{\eta_\nu + \sigma^2} \right\}.
\end{align*}
\]

Let \(\delta = \sigma^2/n\lambda \). Then an approximation of the negative log-marginal likelihood is
\[
DGML(\lambda, \theta) = \log |\hat{R}| + \frac{1}{\sigma^2} (\hat{f})^2 - \frac{1}{2\sigma^2} u_c^TW_c^{-1}u_c \\
+ \frac{1}{2} \sum_{\nu=1}^{n-p} \left\{ \log(\eta_\nu/n\lambda + 1) + \frac{z_\nu^2}{\sigma^2(\eta_\nu/n\lambda + 1)} \right\}. \quad (6.20)
\]

Notice that \(\hat{f}, u_c, W_c, \hat{R}, \eta_\nu \), and \(z_\nu \) all depend on \(\lambda \) and \(\theta \) even though the dependencies are not expressed explicitly. The function \(DGML(\lambda, \theta) \) is referred to as the \textit{direct generalized maximum likelihood} (DGML) criterion, and the minimizers of \(DGML(\lambda, \theta) \) are called the DGML estimate of the smoothing parameter. Section 6.4 shows a simple implementation of the DGML criterion for the gamma distribution.
Let $y_c = (y_{1c}, \ldots, y_{nc})^T$. Based on (6.12), consider the approximation model at convergence

$$y_{ic} = L_if + \epsilon_i, \quad i = 1, \ldots, n,$$ \hspace{1cm} (6.21)

where ϵ_i has mean 0 and variance $\sigma^2 w_i^{-1}$. Assume prior (6.16) for f. Then, as in Section 5.2.5, Bayesian confidence intervals can be constructed for f in the approximation model (6.21). They provide approximate confidence intervals for f in the generalized SS ANOVA model. The bootstrap approach may also be used to construct confidence intervals, and the extension is straightforward.

Connections between smoothing spline models and LME models are presented in Sections 3.5, 4.7, and 5.2.4. We now extend this connection to data from exponential families. Consider the following generalized linear mixed-effects model (GLMM) (Breslow and Clayton 1993)

$$G\{E(y|u)\} = Td + Zu,$$ \hspace{1cm} (6.22)

where G is the link function, d are fixed effects, $u = (u_1^T, \ldots, u_q^T)^T$ are random effects, $Z = (I_{n}, \ldots, I_{n})$, $u_k \sim N(0, \sigma^2 \theta_k \Sigma_k / n \lambda)$ for $k = 1, \ldots, q$, and u_k are mutually independent. Then $u \sim N(0, \sigma^2 D / n \lambda)$, where $D = \text{diag}(\theta_1 \Sigma_1, \ldots, \theta_q \Sigma_q)$. Setting $u_k = \theta_k \Sigma_k c$ as in the Gaussian case (Opsomer et al. 2001) and noting that $ZDZ^T = \Sigma_q$, we have $u = DZ^T c$ and $u^T \{\text{Cov}(u)\}^{-1} u = n \lambda c^T ZDD^T ZDZ^T c / \sigma^2 = n \lambda c^T ZDD^T ZDZ^T c / \sigma^2 = n \lambda c^T \Sigma_q c / \sigma^2$. Note that $Zu = \Sigma q c$. Therefore the PL (6.7) is the same as the penalized quasi-likelihood (PQL) of the GLMM (6.22) (equation (6) in Breslow and Clayton (1993)).

6.3 Wisconsin Epidemiological Study of Diabetic Retinopathy

We use the Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) data to illustrated how to fit an SS ANOVA model to binary responses. Based on Wahba, Wang, Gu, Klein and Klein (1995), we investigate how probability of progression to diabetic retinopathy at the first follow-up (prg) depends on the following covariates at baseline: duration of diabetes (dur), glycosylated hemoglobin (gly), and body mass index (bmi).

Let y be the response variable prg where $y = 1$ represents progression of retinopathy and $y = 0$ otherwise. Let x_1, x_2, and x_3 be the covariates dur, gly, and bmi transformed into $[0, 1]$. Let $x = (x_1, x_2, x_3)$ and
Generalized Smoothing Spline ANOVA

\[f(x) = \logit P(y = 1|x). \] We model \(f \) using the tensor product space \(W^2_2[0,1] \odot W^2_2[0,1] \odot W^2_2[0,1] \). The three-way SS ANOVA decomposition can be derived similarly using the method in Chapter 4. For simplicity, we will ignore three-way interactions and start with the following SS ANOVA model with all two-way interactions:

\[
\begin{align*}
 f(x) &= \mu + \beta_1 \times (x_1 - 0.5) + \beta_2 \times (x_2 - 0.5) + \beta_3 \times (x_3 - 0.5) \\
 &\quad + \beta_4 \times (x_1 - 0.5)(x_2 - 0.5) + \beta_5 \times (x_1 - 0.5)(x_3 - 0.5) \\
 &\quad + \beta_6 \times (x_2 - 0.5)(x_3 - 0.5) + f_1^s(x_1) + f_2^s(x_2) + f_3^s(x_3) \\
 &\quad + f_{12}^s(x_1, x_2) + f_{13}^s(x_1, x_3) + f_{23}^s(x_2, x_3) \\
 &\quad + f_{12}^{ls}(x_1 \times x_2) + f_{13}^{ls}(x_1 \times x_3) + f_{23}^{ls}(x_2 \times x_3) \\
 &\quad + f_{12}^{sl}(x_1, x_2) + f_{13}^{sl}(x_1, x_3) + f_{23}^{sl}(x_2, x_3) + f_{123}^{ss}(x_1, x_2, x_3). \quad (6.23)
\end{align*}
\]

The following statements fit model (6.23) with smoothing parameter selected by the UBR method:

```r
> data(wesdr); attach(wesdr)
> y <- prg
> x1 <- (dur-min(dur))/diff(range(dur))
> x2 <- (gly-min(gly))/diff(range(gly))
> x3 <- (bmi-min(bmi))/diff(range(bmi))
> wesdr.fit1 <- ssr(y~I(x1-.5)+I(x2-.5)+I(x3-.5)+
                  I((x1-.5)*(x2-.5))+I((x1-.5)*(x3-.5))+
                  I((x2-.5)*(x3-.5)),
                  rk=list(cubic(x1), cubic(x2), cubic(x3),
                       rk.prod(kron(x1-.5),cubic(x2)),
                       rk.prod(kron(x2-.5),cubic(x1)),
                       rk.prod(cubic(x1),cubic(x2)),
                       rk.prod(cubic(x1),cubic(x3)),
                       rk.prod(kron(x1-.5),cubic(x3)),
                       rk.prod(kron(x2-.5),cubic(x1)),
                       rk.prod(kron(x3-.5),cubic(x1)),
                       rk.prod(kron(x2-.5),cubic(x3)),
                       rk.prod(kron(x3-.5),cubic(x2)),
                       rk.prod(cubic(x2),cubic(x3))),
                  family="binary", spar="u", varht=1)
> summary(wesdr.fit1)
```

UBR estimate(s) of smoothing parameter(s) :
6.913248e-06 1.920409e+04 9.516636e-01 2.966542e+03
6.005694e+02 6.345814e+01 5.602521e+02 2.472658e+02
1.816387e-07 9.820496e-07 1.481754e+03 2.789458e-07
Equivalent Degrees of Freedom (DF): 12.16
Components corresponding to large values of smoothing parameters are small. As in Section 4.9.2, we compute the Euclidean norm of the estimate for each component centered around zero:

\[
\text{norm.cen} \leftarrow \text{function}(x) \sqrt{\text{sum}((x - \text{mean}(x))^2)}
\]

\[
\text{comp.est1} \leftarrow \text{predict}(\text{wesdr.fit1}, \text{pstd}=\text{F}, \\
\text{terms} = \text{diag(}\text{rep}(1,19))[-1,])
\]

\[
\text{comp.norm1} \leftarrow \text{apply}(\text{comp.est1}[,], 2, \text{norm.cen})
\]

\[
\text{print}(\text{round}(\text{comp.norm1}, 2))
\]

\[
9.13 44.02 15.25 5.40 14.29 21.88 8.51 0.00 0.00 0.00 0.00 0.00 0.00 5.17 5.39 0.00 2.41
\]

Both the estimates of smoothing parameters and the norms indicate that the interaction between \(\text{dur} (x_1)\) and \(\text{gly} (x_2)\) can be dropped. Therefore, we fit the SS ANOVA model (6.23) with components \(f_{12}^{l}, f_{12}^{s}, \) and \(f_{12}^{s}\) being eliminated:

\[
\text{wesdr.fit2} \leftarrow \text{update}(\text{wesdr.fit1}, \\
\text{rk} = \text{list}(\text{cubic}(x1), \text{cubic}(x2), \text{cubic}(x3), \\
\text{rk.prod}(\text{kron}(x1-.5), \text{cubic}(x3)), \\
\text{rk.prod}(\text{kron}(x3-.5), \text{cubic}(x1)), \\
\text{rk.prod}(\text{cubic}(x1), \text{cubic}(x3)), \\
\text{rk.prod}(\text{kron}(x2-.5), \text{cubic}(x3)), \\
\text{rk.prod}(\text{kron}(x3-.5), \text{cubic}(x2)), \\
\text{rk.prod}(\text{cubic}(x2), \text{cubic}(x3))))
\]

\[
\text{comp.est2} \leftarrow \text{predict}(\text{wesdr.fit2}, \\
\text{terms} = \text{diag(}\text{rep}(1,16))[-1,], \text{pstd}=\text{F})
\]

\[
\text{comp.norm2} \leftarrow \text{apply}(\text{comp.est2}[,], 2, \text{norm.cen})
\]

\[
\text{print}(\text{round}(\text{comp.norm2}, 2))
\]

\[
9.13 44.02 15.25 5.40 14.29 21.88 8.51 0.00 0.00 5.17 5.39 0.00 2.41
\]

Compared to other components, the norms of the nonparametric interactions \(f_{13}^{l}, f_{13}^{s}, f_{23}^{l}, f_{23}^{s}, f_{31}^{l}, f_{31}^{s}\) and \(f_{32}^{l}\) are relatively small. We further compute 95% Bayesian confidence intervals for the overall nonparametric interaction between \(x_1\) and \(x_3\), \(f_{13}^{l} + f_{13}^{s} + f_{13}^{s}\), the overall nonparametric interaction between \(x_2\) and \(x_3\), \(f_{23}^{l} + f_{23}^{s} + f_{23}^{s}\), and the proportion of design points for which zero is outside these confidence intervals:

\[
\text{int.dur.bmi} \leftarrow \text{predict}(\text{wesdr.fit2}, \\
\text{terms} = \text{c}(\text{rep}(0,10), \text{rep}(1,3), \text{rep}(0,3)))
\]

\[
\text{mean}((\text{int.dur.bmi} - 1.96*\text{int.dur.bmi} \cdot \text{pstd} > 0) | \\
(\text{int.dur.bmi} + 1.96*\text{int.dur.bmi} \cdot \text{pstd} < 0))
\]

\[0\]
Therefore, for both overall nonparametric interactions, the 95% confidence intervals contain zero at all design points. This suggests that the nonparametric interactions may be dropped. We fit the SS ANOVA model (6.23) with all nonparametric interactions being eliminated:

```r
> wesdr.fit3 <- update(wesdr.fit2, rk=list(cubic(x1), cubic(x2), cubic(x3)))
> summary(wesdr.fit3)
UBR estimate(s) of smoothing parameter(s) :
 4.902745e-06 5.474122e+00 1.108322e-05
Equivalent Degrees of Freedom (DF): 11.78733
```

Based on the estimates of smoothing parameters and the norms, the nonparametric main effect of x_2, f_{s2}, can be dropped. Therefore, we fit the final model:

```r
> wesdr.fit4 <- update(wesdr.fit3, rk=list(cubic(x1), cubic(x3)))
> summary(wesdr.fit4)
...```

To look at the effect of $dur$, with $gly$ and $bmi$ being fixed at the medians of their observed values, we compute estimates of the probabilities and posterior standard deviations at a grid point of $dur$. The estimated probability function and the approximate 95% Bayesian confidence intervals are shown in Figure 6.1(a). The risk of progression of retinopathy increases up to a duration of about 10 years and then decreases, possibly caused by censoring due to death in patients with longer durations. Similar plots for the effects of $gly$ and $bmi$ are shown in Figures 6.1(b) and
FIGURE 6.1 WESDR data, plots of (a) the estimated probability as a function of \( \text{dur} \) with \( \text{gly} \) and \( \text{bmi} \) being fixed at the medians of their observed values, (b) the estimated probability as a function of \( \text{gly} \) with \( \text{dur} \) and \( \text{bmi} \) being fixed at the medians of their observed values, and (c) the estimated probability as a function of \( \text{bmi} \) with \( \text{dur} \) and \( \text{gly} \) being fixed at the medians of their observed values. Shaded regions are approximate 95% Bayesian confidence intervals. Rugs on the bottom and the top of each plot are observations of \( \text{prg} \).

6.1(c). The risk of progression of retinopathy increases with increasing glycosylated hemoglobin, and the risk increases with increasing body mass index until a value of about 25 kg/m\(^2\), after which the trend is uncertain due to wide confidence intervals. As expected, the confidence intervals are wider in areas where observations are sparse.

6.4 Smoothing Spline Estimation of Variance Functions

Consider the following heteroscedastic SS ANOVA model

\[
y_i = \mathcal{L}_{1i} f_1 + \exp\{\mathcal{L}_{2i} f_2/2\} \epsilon_i, \quad i = 1, \ldots, n, \tag{6.24}
\]

where \( f_k \) is a function on \( X_k = X_{k1} \times X_{k2} \times \cdots \times X_{kd_k} \) with model space \( \mathcal{M}_k = \mathcal{H}^{k0} \oplus \mathcal{H}^{k1} \oplus \cdots \oplus \mathcal{H}^{kq_k} \) for \( k = 1, 2 \); \( \mathcal{L}_{1i} \) and \( \mathcal{L}_{2i} \) are bounded linear functionals; and \( \epsilon_i \sim \text{iid N}(0, 1) \). The goal is to estimate both the mean function \( f_1 \) and the variance function \( f_2 \). Note that both the mean and variance functions are modeled nonparametrically in this section. This
One simple approach to estimating functions \( f_1 \) and \( f_2 \) is to use the following two-step procedure:

1. Estimate the mean function \( f_1 \) as if random errors are homoscedastic.
2. Estimate the variance function \( f_2 \) based on squared residuals from the first step.
3. Estimate the mean function again using the estimated variance function.

The PLS estimation method in Chapter 4 can be used in the first step. Denote the estimate at the first step as \( \tilde{f}_1 \) and \( r_i = y_i - \mathcal{L}_{11}\tilde{f}_1 \) as residuals. Let \( z_i = r_i^2 \). Under suitable conditions, \( z_i \approx \exp\{\mathcal{L}_{22}f_2\}\chi^2_{i,1} \), where \( \chi^2_{i,1} \) are iid Chi-square random variables with degree of freedom 1. Regarding Chi-square distribution as a special case of the gamma distribution, the PL method described in this chapter can be used to estimate the variance function \( f_2 \) at the second step. Denote the estimate at the second step as \( \tilde{f}_2 \). Then the PWLS method in Chapter 5 can be used in the third step with known covariance \( W^{-1} = \text{diag}(\mathcal{L}_{21}\tilde{f}_2, \ldots, \mathcal{L}_{2n}\tilde{f}_2) \).

We now use the motorcycle data to illustrate the foregoing two-step procedure. We have fitted a cubic spline to the logarithm of squared residuals in Section 5.4.1. Based on model (3.53), consider the heteroscedastic partial spline model

\[
y_i = f_1(x_i) + \exp\{f_2(x_i)/2\}\epsilon_i, \quad i = 1, \ldots, n, \tag{6.25}
\]

where \( f_1(x) = \sum_{j=1}^{3} \beta_j (x - t_j)_+ + g_1(x), \) \( t_1 = 0.2128, t_2 = 0.3666 \) and \( t_3 = 0.5113 \) are the change-points in the first derivative, and \( \epsilon_i \sim \text{N}(0,1) \). We model both \( g_1 \) and \( f_2 \) using the cubic spline model space \( W_2^{3}[0,1] \). The following statements implement the two-step procedure for model (6.25):

```r
step 1
> t1 <- .2128; t2 <- .3666; t3 <- .5113;
> s1 <- (x-t1)*(x>t1); s2 <- (x-t2)*(x>t2)
> s3 <- (x-t3)*(x>t3)
> mcycle.ps.fit4 <- ssr(accel~x+s1+s2+s3, rk=cubic(x))

step 2
> z1 <- residuals(mcycle.ps.fit4)**2
> mcycle.v.1 <- ssr(z1~x, cubic(x), limnla=c(-6,-1),
```
data. Let \( z \) be the backfitting procedure. Circles are (a) logarithm of the squared residuals based on the two-step procedure with squared differences, and (c) the backfitting procedure. Regions are (a) the two-step procedure with squared residuals, (b) the backfitting procedure.

In the second step, the search range for \( \log_{10}(n \lambda) \) is set as \([-6, -1]\) to avoid numerical problems. The actual estimate of the smoothing parameter \( \log_{10}(n \lambda) = -6 \), which leads to a rough estimate of \( f_2 \) (Figure 6.2(a)).

The first step in the two-step procedure may be replaced by a difference-based method. Note that \( x_1 \leq x_2 \leq \cdots \leq x_n \) in the motorcycle data. Let \( z_i = (y_{i+1} - y_i)^2 / 2 \) for \( i = 1, \ldots, n - 1 \). When \( x_{i+1} - x_i \) is small, \( y_{i+1} - y_i = f_i(x_{i+1}) - f_1(x_i) + \exp\{f_2(x_{i+1})/2\} \varepsilon_{i+1} - \exp\{f_2(x_i)/2\} \varepsilon_i \approx \exp\{f_2(\bar{x}_i)/2\} (\varepsilon_{i+1} - \varepsilon_i) \), where \( \bar{x}_i = (x_{i+1} + x_i) / 2 \). Then, \( z_i \approx \exp\{f_2(\bar{x}_i)\} \chi^2_{1,1} \), where \( \chi^2_{1,1} \) are Chi-square random variables with degree of freedom 1. Ignoring correlations between neighboring observations, the following statements implement this difference-based method:

```r
> z2 <- diff(accel)**2/2; z2[z2<.00001] <- .00001
```

**FIGURE 6.2** Motorcycle data, plots of the PL cubic spline estimates of \( f_2 \) (lines), and 95% approximate Bayesian confidence intervals (shaded regions) based on (a) the two-step procedure with squared residuals, (b) the two-step procedure with squared differences, and (c) the backfitting procedure. Circles are (a) logarithm of the squared residuals based on model (3.53), (b) logarithm of the squared differences, and (c) logarithm of the squared residuals based on the final fit to the mean function in the backfitting procedure.
> n <- length(x); xx <- (x[1:(n-1)] + x[2:n])/2
> mcycle.v.g <- ssr(z2~xx, cubic(xx), limnla=c(-6,-1),
  family = 'gamma', spar = 'u', varht = 1)
> w <- predict(mcycle.v.g, pstd=F,
  newdata=data.frame(xx=x))
> mcycle.ps.fit6 <- update(mcycle.ps.fit4,
  weights=exp(w$fit))

As in Yuan and Wahba (2004), we set $z_i = \max\{0.00001, (y_{i+1} - y_i)^2/2\}$ to avoid overfitting. Again, the actual estimate of the smoothing parameters reaches the lower bound such that $\log_{10}(n\hat{\lambda}) = -6$. The estimate of $f_2$ is rough (Figure 6.2(b)). A more formal procedure is to estimate $f_1$ and $f_2$ in model (6.24) jointly as the minimizers of the following doubly penalized likelihood (DPL) (Yuan and Wahba 2004):

$$\frac{1}{n}\sum_{i=1}^{n} \left\{ (y_i - \mathcal{L}_{1i}f_1)^2 \exp(-\mathcal{L}_{2i}f_2) \right\} + \sum_{k=1}^{2} \sum_{j=1}^{q_k} \lambda_{kj}\|P_{kj}f_k\|^2,$$

(6.26)

where the first part is the negative log-likelihood, $P_{kj}$ is the orthogonal projector in $\mathcal{M}_k$ onto $\mathcal{H}^{kj}$ for $k = 1, 2$, and $\lambda_{kj}$ are smoothing parameters. Following the same arguments in Section 6.2.1, the minimizers of the DPL can be represented as

$$\hat{f}_k(x) = \sum_{\nu=1}^{p_k} d_{k,\nu} \phi_{k,\nu}(x) + \sum_{i=1}^{n} \sum_{j=1}^{q_k} \theta_{kj} \mathcal{L}_{k,i}(z) R^{kj}(x, z),$$

$$x, z \in \mathcal{X}_k, \ k = 1, 2,$$

(6.27)

where $\lambda_{kj} = \lambda_k/\theta_{kj}$, $\phi_{k,\nu}$ for $\nu = 1, \ldots, p_k$ are basis functions of $\mathcal{H}^{kj}$, and $R^{kj}$ for $j = 1, \ldots, q_k$ are RKs of $\mathcal{H}^{kj}$. It is difficult to solve coefficients $d_{k,\nu}$ and $c_{k,\nu}$ directly. However, it is easy to implement a backfitting procedure by iterating the following two steps until convergence: (a) Conditional on current estimates of $d_{2,\nu}$ and $c_{2,\nu}$, update $d_{1,\nu}$ and $c_{1,\nu}$; (b) Conditional on current estimates of $d_{1,\nu}$ and $c_{1,\nu}$, update $d_{2,\nu}$ and $c_{2,\nu}$. Note that, when $d_{2,\nu}$ and $c_{2,\nu}$ are fixed, $f_2$ in (6.26) is fixed, and the DPL reduces to the PWLS (5.3) with known weights. When $d_{1,\nu}$ and $c_{1,\nu}$ are fixed, $f_1$ in (6.27) is fixed and the DPL reduces to the PL (6.4) for observations $z_i = \exp(\mathcal{L}_{2i}f_2)\chi^2_{i,1}$. Therefore, steps (a) and (b) correspond to steps 2 and 3 in the two-step procedure, and the backfitting procedure extends the two-step procedure by iterating steps 2 and 3 until convergence. The above backfitting procedure is essentially the same as the iterative procedure in Yuan and Wahba (2004) where
different methods were used to select smoothing parameters. The following is a simple R function that implements the backfitting procedure for motorcycle data:

```r
jemv <- function(x, y, prec=1e-6, maxit=30) {
 t1 <- .2128; t2 <- .3666; t3 <- .5113
 s1 <- (x-t1)*(x>t1); s2 <- (x-t2)*(x>t2)
 s3 <- (x-t3)*(x>t3)
 err <- 1e20; eta <- rep(1,length(x))
 while (err>prec&maxit>0) {
 fitf <- ssr(y~x+s1+s2+s3, cubic(x), weights=exp(eta))
 z <- fitf$resi**2; z[z<.00001] <- .00001
 fitv <- ssr(z~x, cubic(x), limnla=c(-5,-1),
 family="gamma", spar="u", varht=1)
 oldeta <- eta
 eta <- fitv$rkpk$eta
 err <- sqrt(mean(((eta-oldeta)/(1+abs(oldeta)))**2))
 maxit <- maxit-1
 }
 return(list(fitf=fitf,fitv=fitv))
}
mcycle.mv <- jemv(x, accel)
```

For estimation of the variance function, a new search range for $\log_{10}(n\lambda)$ has to be set as $[-5, -1]$ to avoid numerical problems. The backfitting algorithm converged in 13 iterations. The estimate of $f_2$ is shown in Figure 6.2(c).

The smoothing parameters in the above procedures are selected by the iterative UBR method. For Chi-square distributed response variables with small degrees of freedom, nonconvergence of the iterative approach may become a serious problem (Liu et al. 2007). Note that the degrees of freedom of Chi-square random variables in the above procedures equal to 1. The direct methods such as the DGML criterion guarantee convergence. We now show a simple implementation of the DGML method for gamma regression. Instead of the Newton–Raphson method, we use the Fisher scoring method, which leads to $u_i = 1 - y_i/\mu_i$ and $w_i = 1$. Consequently, $W_n = I$, and there is no need for the transformation. Furthermore, $|\tilde{R}|$ will be dropped since it is independent of the smoothing parameter. The following R function computes the DGML in (6.20) for gamma regression:

```r
DGML <- function(th, nlaht, y, S, Q) {
 if (length(th)==1) { nlaht <- th; Qt <- Q }
 if (length(th)>1) {
```
Generalized Smoothing Spline ANOVA

\[ \theta \leftarrow 10^{-\text{th}}; \ Q_t \leftarrow 0 \]

\[
\text{for} \ (i \in 1:\text{dim}(Q)[3]) \ Q_t \leftarrow Q_t + \theta[i]*Q[,i] \\
\]

\[
\text{fit} \leftarrow \text{try}(\text{ssr}(y\sim S-1, \ Q_t, \ \text{limnl}=\text{nlaht}, \ \text{family}='\text{gamma}', \ \
\text{spar}='u', \ \text{varht}=1)) \\
\]

\[
\text{if}(\text{class(\text{fit})}=='\text{ssr'}) \{ \\
\text{fht} \leftarrow \text{fit}$\text{rpk}\$\text{eta} \\
\text{tmp} \leftarrow y*\text{exp}(\text{fht}) \\
\text{uc} \leftarrow 1-\text{tmp} \\
\text{yt} \leftarrow \text{fht}-\text{uc} \\
\text{qrq} \leftarrow \text{qr}(Q(S), \ \text{complete}=\text{T}) \\
\text{q2} \leftarrow \text{qrq}[\ ,\text{ncol}(S)+1:]\text{row}(S)] \\
\text{V} \leftarrow t(q2)%*%Q_t%*%q2 \\
\text{l} \leftarrow \text{eigen}((V + t(V))/2) \\
\text{U} \leftarrow 1\text{vectors} \\
\text{e} \leftarrow 1\text{values} \\
\text{z} \leftarrow t(U)%*%t(q2)%*%yt \\
\text{delta} \leftarrow 10^{-\text{nlalh}t} \\
\text{GML} \leftarrow \text{sum}((\text{tmp}+\text{fit})-\text{sum}(\text{uc}^2)/2+\text{sum}(\text{log}(\text{delta}\times e+1))/2 \\
\text{+sum}(z^2/(\text{delta}\times e+1))/2) \\
\text{return(\text{GML})} \\
\}
\]

\[
\text{else return}(1e10) \\
\}
\]

where \( fht, uc, yt, V, U, e, z, \) and delta correspond to \( \hat{f}, \ u_c, \ \bar{y}, \ \hat{Q}_1^T \hat{\Sigma} \hat{Q}_2, \ U, (e_1, \ldots, e_{n-p})^T, \ z, \) and \( \delta, \) respectively, in the definition of the DGML in (6.20). Note that \( \sigma^2 = 1. \) The R functions qr and eigen are used to compute the QR decomposition and eigendecomposition. For an SS ANOVA model with \( q = 1, \) the input \text{th} corresponds to \( \log_{10}(n\lambda), \) \text{nlaht} is not used, \( y \) are observations, \( S \) corresponds to the matrix \( T, \) and \( Q \) corresponds to the matrix \( \Sigma. \) For an SS ANOVA model with \( q > 1, \) the input \text{th} corresponds to \( \log_{10} \theta, \) \text{nlaht} corresponds to \( \log_{10}(n\lambda), \) \( y \) are observations, \( S \) corresponds to the matrix \( T, \) and \( Q \) is an \((n, n, q)\) array corresponding to the matrices \( \Sigma_k \) for \( k = 1, \ldots, q. \)

We now apply the above DGML method to the second step in the two-step procedure. We compute the DGML criterion on a grid of \( \log_{10}(n\lambda), \) find the DGML estimate of the smoothing parameter as the minimizer of the DGML criterion, and fit again with the smoothing parameter being fixed as the DGML estimate:

\[
> S \leftarrow \text{cbind}(1,x); \ Q \leftarrow \text{cubic}(x) \\
> \text{lgrid} \leftarrow \text{seq}(-6,-2,\text{by=}.1) \\
> \text{gml} \leftarrow \text{sapply}(\text{lgrid}, \text{DGML}, \text{nlalh}t=0, \ y=z1, \ S=S, \ Q=Q)
\]
> nlaht <- lgrid[order(gml)[1]]
> mcycle.v.g4 <- ssr(z1~x, cubic(x), limnla=nlaht,
family='gamma', spar='u', varht=1)

FIGURE 6.3 Motorcycle data, plots of (a) the DGML function where the minimum point is marked with a short bar at the bottom; (b) logarithm of squared residuals (circles) based on model (3.53), PL cubic spline estimate of $f_2$ (line) to squared residuals with the DGML estimate of the smoothing parameter, and 95% approximate Bayesian confidence intervals (shaded region); and (c) observations (circles) and PWLS partial spline estimate of $f_1$ (line) with 95% Bayesian confidence intervals (shaded region).

The DGML function is shown in Figure 6.3(a). It reaches the minimum at $\log_{10}(n\hat{\lambda}) = -4.2$. The PL cubic spline estimate of $f_2$ with the DGML choice of the smoothing parameter is shown in Figure 6.3(b). The PWLS partial spline estimate of $f_1$ and 95% Bayesian confidence intervals are shown in Figure 6.3(c). The effect of unequal variances is reflected in the widths of the confidence intervals.

6.5 Smoothing Spline Spectral Analysis

6.5.1 Spectrum Estimation of a Stationary Process

The spectrum is often used to describe the power distribution of a time series. Consider a zero-mean stationary time series $X_t$, $t = 0, \pm 1, \pm 2, \ldots$. 
The spectrum is defined as
\[
S(\omega) = \sum_{u=-\infty}^{\infty} \gamma(u) \exp(-i2\pi\omega u), \quad \omega \in [0, 1], \quad (6.28)
\]
where \(\gamma(u) = \text{E}(X_t X_{t+u})\) is the covariance function, and \(i = \sqrt{-1}\). Let \(X_0, X_1, \ldots, X_{T-1}\) be a finite sample of the stationary process and define the periodogram at frequency \(\omega_k = k/T\) as
\[
y_k = T^{-1} \left| \sum_{t=0}^{T-1} X_t \exp(i2\pi\omega_k t) \right|^2, \quad k = 0, \ldots, T - 1. \quad (6.29)
\]
The periodogram is an asymptotically unbiased but inconsistent estimator of the underlying true spectrum. Many different smoothing techniques have been proposed to overcome this problem. We now show how to estimate the spectrum using smoothing spline based on observations \(\{(\omega_k, y_k), k = 0, \ldots, T - 1\}\).

Under standard mixing conditions, the periodograms are asymptotically independent and distributed as
\[
y_k \sim \begin{cases} 
S(\omega_k) \chi_1^2, & \omega_k = 0, 1/2, \\
S(\omega_k) \chi_2^2/2, & \omega_k \neq 0, 1/2.
\end{cases}
\]
Regarding Chi-square distribution as a special case of the gamma distribution, the method described in this chapter can be used to estimate the spectrum. Consider the logarithmic link function and let \(f = \log(S)\) be the log spectrum. We model function \(f\) using the periodic spline space \(W_m^2(\text{per})\). Note that \(f(\omega)\) is symmetric about \(\omega = 0.5\). Therefore, it suffices to estimate \(f(\omega)\) for \(\omega \in [0, 0.5]\). Nevertheless, to estimate \(f\) as a periodic function, we will use periodograms at all frequencies in Section 6.5.3.

### 6.5.2 Time-Varying Spectrum Estimation of a Locally Stationary Process

Many time series are nonstationary. Locally stationary processes have been proposed to approximate the nonstationary time series. The time-varying spectrum of a locally stationary time series characterizes changes of stochastic variation over time.

A zero-mean stochastic process \(\{X_t, \ t = 0, \ldots, T - 1\}\) is a locally stationary process if
\[
X_t = \int_{0}^{1} A(\omega, t/T) \exp(i2\pi\omega t) dZ(\omega), \quad (6.30)
\]
where \( Z(\omega) \) is a zero-mean stochastic process on \([0, 1]\), and \( A(\omega, u) \) denotes a transfer function with continuous second-order derivatives for \((\omega, u) \in [0, 1] \times [0, 1]\). Define the time-varying spectrum as

\[
S(\omega, u) = ||A(\omega, u)||^2.
\] (6.31)

Consider the logarithmic link function and let \( f(\omega, u) = \log S(\omega, u) \). Since it is a periodic function of \( \omega \), we model the log spectrum \( f \) using the tensor product space \( W^2_2(\text{per}) \otimes W^2_2[0, 1] \), where the SS ANOVA decomposition was derived in Section 4.4.5. The SS ANOVA model using notations in this section can be represented as

\[
f(\omega, u) = (\mu + \beta \times (u - 0.5) + f_2^2(u) + f_1(\omega) + f_{12}^s(\omega, u) + f_{12}^s(\omega, u)), \quad (6.32)
\]

where \( \beta \times (u - 0.5) \) and \( f_2^2(u) \) are linear and smooth main effects of time, \( f_1(\omega) \) is the smooth main effect of frequency, and \( f_{12}^s(\omega, u) \) and \( f_{12}^s(\omega, u) \) are linear–smooth and smooth–smooth interactions between frequency and time.

To estimate the bivariate function \( f \), we compute local periodograms on some time-frequency grids. Specifically, divide the time domain into \( J \) disjoint blocks \([b_j, b_{j+1})\), where \( 0 = b_1 < b_2 < \cdots < b_J < b_{J+1} = 1 \). Let \( u_j = (b_j + b_{j+1})/2 \) be the middle points of these \( J \) blocks. Let \( \omega_k \) for \( k = 1, \ldots, K \) be \( K \) frequencies in \([0, 1]\). Define the local periodograms as

\[
y_{(k-1)J+j} = \frac{|\sum_{t=b_j}^{b_{j+1}-1} X_t \exp(i2\pi\omega_k t)|^2}{|b_{j+1} - b_j|}, \quad k = 1, \ldots, K; \quad j = 1, \ldots, J.
\] (6.33)

Again, under regularity conditions, the local periodograms are asymptotically independent and distributed as \((\text{Guo, Dai, Ombao and von Sachs 2003) : \n}

\[
y_{(k-1)J+j} \sim \begin{cases} \exp \{ f(\omega_k, u_j) \} \chi^2_1, & \omega_k = 0, 1/2, \\ \exp \{ f(\omega_k, u_j) \} \chi^2_2/2, & \omega_k \neq 0, 1/2. \end{cases}
\]

Let \( x = (\omega, u) \) and \( x_{(k-1)J+j} = (\omega_k, u_j) \) for \( k = 1, \ldots, K \), and \( j = 1, \ldots, J \). Then the time-varying spectrum can be estimated based on observations \( \{(x_i, y_i), \ i = 1, \ldots, KJ\} \).

The SS ANOVA decomposition (6.32) may also be used to test if a locally stationary process is stationary. The locally stationary process \( X(t) \) is stationary if \( f(\omega, u) \) is independent of \( u \). Let \( h(u) = \beta \times (u - 0.5) + f_2^2(u) + f_1^s(\omega, u) + f_{12}^s(\omega, u) \), which collects all terms involving time in (6.32). Then the hypothesis is

\[
H_0 : \ h(u) = 0 \text{ for all } u, \quad H_1 : \ h(u) \neq 0 \text{ for some } u.
\]
The full SS ANOVA model (6.32) is reduced to \( f(\omega, u) = \mu + f_1(\omega) \) under \( H_0 \). Denote \( \hat{f}^F \) and \( \hat{f}^R \) as the estimates of \( f \) under the full and reduced models, respectively. Let

\[
D_F = \sum_{i=1}^{n} \{ \hat{f}^F_i + y_i \exp(-\hat{f}^F_i) - \log y_i - 1 \},
\]
\[
D_R = \sum_{i=1}^{n} \{ \hat{f}^R_i + y_i \exp(-\hat{f}^R_i) - \log y_i - 1 \}
\]
be deviances under the full and reduced models. We construct two test statistics

\[
T_1 = D_R - D_F,
\]
\[
T_2 = \int_0^1 \int_0^1 (\hat{f}^F(\omega, u) - \hat{f}^R(\omega, u))^2 \, d\omega \, du,
\]
where \( T_1 \) corresponds to the Chi-square statistics commonly used for generalized linear models, and \( T_2 \) computes the \( L_2 \) distance between \( \hat{f}^F \) and \( \hat{f}^R \). We reject \( H_0 \) when these statistics are large. It is difficult to derive the null distributions of these statistics. Note that \( f \) does not depend on \( u \) under \( H_0 \). Therefore, the null distribution can be approximated by permutation. Specifically, permutation samples are generated by shuffling time grid, and statistics \( T_1 \) and \( T_2 \) are computed for each permutation sample. Then the \( p \)-values are approximated as the proportion of statistics based on permutation samples that are larger than those based on the original data.

### 6.5.3 Epileptic EEG

We now illustrate how to estimate the spectrum of a stationary process and the time-varying spectrum of a locally stationary process using the seizure data. The data contain two 5-minute intracranial electroencephalograms (IEEG) segments from a patient: one at baseline extracted at least 4 hours before the seizure’s onset (labeled as baseline), and one right before a seizure’s clinical onset (labeled as preseizure). Observations are shown in Figure 6.4.

First assume that both the baseline and preseizure series are stationary. Then the following statements compute the periodograms and fit a periodic spline model for the baseline series:

```r
> data(seizure); attach(seizure)
> n <- nrow(seizure)
> x <- seq(1,n-1, by=120)/n
```
FIGURE 6.4 Seizure data, plots of 5-minute baseline segments collected hours away from the seizure (above), and 5-minute preseizure segments with the seizure’s onset at the 5th minute (below). The sampling rate is 200 Hertz. The total number of time points is 60,000 for each segment.

\[
y \leftarrow \left( \text{abs}(\text{fft(seizure$base)))^2/n \right) [-1][\text{seq}(1,n-1, \text{by}=120)]
\]
\[
\text{seizure.s.base} \leftarrow \text{ssr(y$\cdot x, \text{periodic}(x), \text{spar}='u', \text{varht}=1, \text{family}='\text{gamma}', \text{limnla}=c(-5,1))}
\]
\[
\text{grid} \leftarrow \text{data.frame(x=seq(0,.5,\text{len}=100))}
\]
\[
\text{seizure.s.base.p} \leftarrow \text{predict(seizure.s.base,grid)}
\]

where the function \texttt{fft} computes an unscaled discrete Fourier transformation. A subset of periodograms is used. The UBR criterion is used to select the smoothing parameter with the dispersion parameter set to 1. We limit the search range for \(\log_{10}(n\lambda)\) to avoid undersmoothing. Log periodograms, periodic spline estimate of the log spectrum, and 95% Bayesian confidence intervals of the baseline series are shown in the left
panel of Figure 6.5. The log spectrum of the preseizure series is estimated similarly. Log periodograms, periodic spline estimate of the log spectrum, and 95% Bayesian confidence intervals of the preseizure series are shown in the right panel of Figure 6.5. Because the sampling rate is 200 HZ and the spectrum is symmetric around 100 HZ, we only show the estimated spectra in frequency bands 0–100 HZ.

![Figure 6.5](image.png)

**FIGURE 6.5** Seizure data, plots log periodograms (dots), estimate of the log spectra (line) based on the iterative UBR method, and 95% Bayesian confidence intervals (shaded region) of the baseline series (left) and preseizure series (right).

The IEEG series may become nonstationary before seizure events. Assume that both the baseline and preseizure series are locally stationary. We create time-frequency grids data with $\omega_k = k/(K + 1)$ and $u_j = (j - .5)/J + 1/2n$ for $k = 1, \ldots, K$ and $j = 1, \ldots, J$ where $n = 60000$ is the length of a time series, and $K = J = 32$. We compute local periodograms for the baseline series:

```r
> pgram <- function(x, freqs) {
 y <- numeric(length(freqs))
 tser <- seq(length(x)) - 1
 for(i in seq(length(freqs))) y[i] <-
 Mod(sum(x*complex(mod=1, arg=-2*pi*freqs[i]*tser)))^2
 y/length(x)
}

> lpgram <- function(x, times, freqs) {
```


\begin{verbatim}
nsub <- floor(length(x)/length(times))
ymat <- matrix(0, length(freqs), length(times))
for (j in seq(length(times)))
  ymat[,j] <- pgram(x[((j-1)*nsub+1):(j*nsub)], freqs)
as.vector(ymat)
\end{verbatim}

\>
\texttt{nf <- nt <- 32; freqs <- 1:nf/(nf+1)}
\>
\texttt{nsub <- floor(n/nt)}
\>
\texttt{times <- (seq(from=(1+nsub)/2, by=nsub, length=nt))/n}
\>
\texttt{y <- lpgram(seizure$base, times, freqs)}

where the functions \texttt{pgram} and \texttt{lpgram}, respectively, compute periodograms for a stationary process and local periodograms for a locally stationary process. We now fit the SS ANOVA model (6.32) for the baseline series:

\>
\texttt{ftgrid <- expand.grid(freqs,times)}
\>
\texttt{x1 <- ftgrid[,1]}
\>
\texttt{x2 <- ftgrid[,2]}
\>
\texttt{seizure.ls.base <- ssr(y~x2,}
\>
\texttt{  rk=list(periodic(x1), cubic(x2),}
\>
\texttt{    rk.prod(periodic(x1),kron(x2-.5)),}
\>
\texttt{    rk.prod(periodic(x1),cubic(x2))),}
\>
\texttt{spar='u', varht=1, family='gamma')}
\>
\texttt{grid <- expand.grid(x1=seq(0,.5,len=50),}
\>
\texttt{x2=seq(0,1,len=50))}
\>
\texttt{seizure.ls.base.p <- predict(seizure.ls.base,}
\>
\texttt{    newdata=grid)}

The SS ANOVA model (6.32) for the preseizure series is fitted similarly. Figure 6.6 shows estimates of time-varying spectra of the baseline series and preseizure series. The iterative UBR method was used in the above fits. The DGML method usually leads to a better estimate of the spectrum or the time-varying spectrum (Qin and Wang 2008). The following function \texttt{spdest} estimates a spectrum or a time-varying spectrum using the DGML method.

\texttt{spdest <- function(y, freq, time, process, control=list(}
\>
\texttt{  optfactr=1e10, limnla=c(-6,1), prec=1e-6, maxit=30))}
\>
\texttt{if (process="S") {
  that <- rep(NA, 4)
  S <- as.matrix(rep(1,length(y)))
  Q <- periodic(freq)
  tmp <- try(optim(-2, DGML, y=y, S=S, Q=Q,}
\end{verbatim}
FIGURE 6.6 Seizure data, plots of estimates of the time-varying spectra of the baseline series (left), and preseizure series (right) based on the iterative UBR method.

```r
method='L-BFGS-B',
lower=control$limnla[1], upper=control$limnla[2],
control=list(factr=control$optfactr))
if (class(tmp)=='try-error') {
 info <- 'optim failure'
}
else {
 if (tmp$convergence==0) {
 nlaht <- tmp$par
 fit <- ssr(y~S-1, Q, limnla=tmp$par, family='gamma',
 spar='u', varht=1)
 info <- 'success'
 }
 else info <- paste('optim failure',
 as.character(tmp$convergence))
}
if (process=='LS') {
 S <- cbind(1,time-.5)
 Q <- array(NA,c(length(freq),length(freq),4))
 Q[,1] <- periodic(freq)
 Q[,2] <- cubic(time)
 Q[,3] <- rk.prod(periodic(freq),kron(time-.5))
```
Q[,4] <- rk.prod(periodic(freq), cubic(time))

# compute initial values for optimization of theta
zz <- log(y) + 0.57721
if (class(tmp) == 'ssr') {
  thini <- tmp$rkpk.obj$theta
  nlaht <- tmp$rkpk.obj$nlaht
}
else {
  thini <- rep(1,4)
  nlaht <- 1.e-8
}

if (class(tmp) == 'try-error') {info = 'optim failure'}
else {
  if (tmp$convergence == 0) {
    thhat <- tmp$par
    Qt <- 0
    for (i in 1:dim(Q)[3]) Qt <- Qt + thhat[i]*Q[,i]
    fit <- ssr(y~S-1, Qt, limnla=nlaht, family='gamma', spar='u', varht=1)
    info <- 'success'
  }
  else {
    info <- paste('optim failure', as.character(tmp$convergence))
  }
}
return(list(fit=fit, nlaht=nlaht, thhat=thhat, info=info))

The argument `process` specifies the type of process with “S” and “LS” corresponding to the stationary and locally stationary processes, respectively. For a stationary process, the argument `y` inputs periodograms at frequencies specified by `freq`. The argument `time` is irrelevant in this case. For a locally stationary process, the argument `y` inputs local periodograms at the time-frequency grid specified by `time` and `freq`, respectively. For locally stationary processes, we fit the logarithmic transformed periodograms to get initial values for smoothing parameters (Wahba 1980, Qin and Wang 2008). The `DGML` function was presented...
Generalized Smoothing Spline ANOVA

in Section 6.4.

The following statements estimate the spectrum of the baseline series as a stationary process using the DGML method and compute posterior means and standard deviations:

```r
> x <- seq(1,n-1,by=120)/n
> y <- pgram(seizure$base, x)
> tmp <- spdest(y, x, 0, ‘S’)
> seizure.s.base.dgml <- ssr(y~x, periodic(x), spar=‘u’, varht=1, family=‘gamma’, limnla=tmp$nlaht)
> grid <- data.frame(x=seq(0,.5,len=100))
> seizure.s.base.dgml.p <- predict(seizure.s.base.dgml, grid)
```

Note that, to use the predict function, we need to call ssr again using the DGML estimate of the smoothing parameter. The spectrum of the preseizure series as a stationary can be estimated similarly. The estimates of spectra are similar to those in Figure 6.5.

Next we estimate the time-varying spectrum of the baseline series as a locally stationary process using the DGML method and compute posterior means:

```r
> y <- lpgram(seizure$base, times, freqs)
> tmp <- spdest(y, x1, x2, ‘LS’)
> th <- 10**tmp$thhat
> S <- cbind(1, x2-.5)
> Q1 <- periodic(x1)
> Q2 <- cubic(x2)
> Q3 <- rk.prod(periodic(x1), kron(x2-.5))
> Q4 <- rk.prod(periodic(x1), cubic(x2))
> Qt <- th[1]*Q1+th[2]*Q2+th[3]*Q3+th[4]*Q4
> seizure.ls.base.dgml <- ssr(y~x2, rk=Qt, spar=‘u’, varht=1, family=‘gamma’, limnla=tmp$nlaht)
> grid <- expand.grid(x1=seq(0,.5,len=50),
 x2=seq(0,1,len=50))
> Sg <- cbind(1,grid$x2-.5)
> Qg1 <- periodic(grid$x1,x1)
> Qg2 <- cubic(grid$x1,x2)
> Qg3 <- rk.prod(periodic(grid$x1,x1),
 kron(grid$x2-.5,x2-.5))
> Qg4 <- rk.prod(periodic(grid$x1,x1), cubic(grid$x2,x2))
> Qgt <- th[1]*Qg1+th[2]*Qg2+th[3]*Qg3+th[4]*Qg4
> seizure.ls.base.dglm.p <-
 Sg%*%seizure.ls.base.dglm$coef$d+
 Qgt%*%seizure.ls.base.dglm$coef$c
```
where the `spdest` function was used to find the DGML estimates of the smoothing parameters, and the `ssr` function was used to calculate the coefficients $c$ and $d$. The time-varying spectrum of the preseizure series as a locally stationary process can be estimated similarly. The estimates of time-varying spectra are shown in Figure 6.7. The estimate of the preseizure series (right panel in Figure 6.7) is smoother than that based on the iterative UBR method (right panel in Figure 6.6).

![Figure 6.7 Seizure data, plots of estimates of the time-varying spectra based on the DGML method of the baseline series (left) and preseizure series (right).](image)

It appears that the baseline spectrum does not vary much over time, while the preseizure spectrum varies over time. Therefore, the baseline series may be stationary, while the preseizure series may be nonstationary. The following statements perform the permutation test for the baseline series with 100 permutations.

```r
z <- seizure$base
n <- length(z); nt <- 32; nf <- 32
freqs <- 1:nf/(nf+1); nsub <- floor(n/nt)
times <- (seq(from=(1+nsub)/2, by=nsub, length=nt))/n
y <- lpgram(z,times,freqs)
ftgrid <- expand.grid(freqs,times)
x1 <- ftgrid[,1]
x2 <- ftgrid[,2]
```
Generalized Smoothing Spline ANOVA

full <- spdest(y, x1, x2, "LS")
reduced <- spdest(y, x1, x2, "S")
fitf <- full$fit$rkpk$eta
fitr <- reduced$fit$rkpk$eta
devf <- sum(-1-log(y)+y*exp(-fitf)+fitf)
devr <- sum(-1-log(y)+y*exp(-fitr)+fitr)
cstat <- devr-devf
l2d <- mean((fitf-fitr)**2)

nperm <- 100; totperm <- 0
cstatp <- l2dp <- NULL
while (totperm < nperm) {
  x2p <- rep(sample(times),rep(nf,nt))
  full <- spdest(y, x1, x2p, "LS")
  if (full$info=="success") {
    totperm <- totperm+1
    fitf <- full$fit$rkpk$eta
    devf <- sum(-1-log(y)+y*exp(-fitf)+fitf)
    cstatp <- c(cstatp, devr-devf)
    l2dp <- c(l2dp, mean((fitf-fitr)**2))
  }
}
print(c(mean(cstatp>cstat),mean(l2dp>l2d)))

Note that there is no need to fit the reduced model for the permuted
data since the log spectrum does not depend on time under the null hypothesis. The permutation test for the preseizure series is performed similarly. The p-values for testing stationarity based on two statistics are 0.82 and 0.73 for the baseline series, and 0.03 and 0.06 for the preseizure series. Therefore, the processes far away from the seizure’s clinical onset can be regarded as stationary, while the processes close to the seizure’s clinical onset are nonstationary.
Chapter 7

Smoothing Spline Nonlinear Regression

7.1 Motivation

The general smoothing spline regression model (2.10) in Chapter 2 and the SS ANOVA model (4.31) in Chapter 4 assume that the unknown function is observed through some linear functionals. This chapter deals with situations when some unknown functions are observed indirectly through nonlinear functionals. We discuss some potential applications in this section. More examples can be found in Section 7.6.

In some applications, the theoretical models depend on the unknown functions nonlinearly. For example, in remote sensing, the satellite upwelling radiance measurements $R_v$ are related to the underlying atmospheric temperature distribution $f$ through the following equation

$$R_v(f) = B_v(f(x_s))\tau_v(x_s) - \int_{x_0}^{x_s} B_v(f(x))\tau'_v(x)dx,$$

where $x$ is some monotone transformation of pressure $p$, for example, the kappa units $x(p) = p^{5/8}$; $x_0$ and $x_s$ are $x$ values at the surface and top of the atmosphere; $\tau_v(x)$ is the transmittance of the atmosphere above $x$ at wavenumber $v$; and $B_v(t)$ is the Planck’s function, $B_v(t) = c_1v^3/\{exp(c_2v/t) - 1\}$, with known constants $c_1$ and $c_2$. The goal is to estimate $f$ as a function of $x$ based on noisy observations of $R_v(f)$. Obviously, $R_v(f)$ is nonlinear in $f$. Other examples involving reservoir modeling and three-dimensional atmospheric temperature distribution from satellite-observed radiances can be found in Wahba (1987) and O’Sullivan (1986).

Very often there are certain constraints such as positivity and monotonicity on the function of interest, and sometimes nonlinear transformations may be used to relax those constraints. For example, consider the following nonparametric regression model

$$y_i = g(x_i) + \epsilon_i, \quad x_i \in [0, 1], \quad i = 1, \ldots, n.$$  \hfill (7.1)
Suppose $g$ is known to be positive. The transformation $g = \exp(f)$ substitutes the original constrained estimation of $g$ by the unconstrained estimation of $f$. The resulting transformed model,

$$y_i = \exp\{f(x_i)\} + \epsilon_i, \quad x_i \in [0, 1], \quad i = 1, \ldots, n,$$

(7.2)

depends on $f$ nonlinearly. Monotonicity is another common constraint. Consider model (7.1) again and suppose $g$ is known to be strictly increasing with $g'(x) > 0$. Write $g'$ as $g'(x) = \exp\{f(x)\}$. Reexpressing $g$ as $g(x) = f(0) + \int_0^x \exp\{f(s)\} ds$ leads to the following model

$$y_i = \beta + \int_0^{x_i} \exp\{f(s)\} ds + \epsilon_i, \quad x_i \in [0, 1], \quad i = 1, \ldots, n.$$

(7.3)

The function $f$ is free of constraints and acts nonlinearly. Strictly speaking, model (7.3) is a semiparametric nonlinear regression model in Section 8.3 since it contains a parameter $\beta$.

Sometimes one may want to consider empirical models that depend on unknown functions nonlinearly. One such model, the multiplicative model, will be introduced in Section 7.6.4.

### 7.2 Nonparametric Nonlinear Regression Models

A general nonparametric nonlinear regression (NNR) model assumes that

$$y_i = N_i(f) + \epsilon_i, \quad i = 1, \ldots, n,$$

(7.4)

where $f = (f_1, \ldots, f_r)$ are $r$ unknown functions, $f_k$ belongs to an RKHS $\mathcal{H}_k$ on an arbitrary domain $\mathcal{X}_k$ for $k = 1, \ldots, r$, $N_i$ are known nonlinear functionals on $\mathcal{H}_1 \times \cdots \times \mathcal{H}_r$, and $\epsilon_i$ are zero-mean independent random errors with a common variance $\sigma^2$. Note that domains $\mathcal{X}_k$ for different functions $f_k$ may be the same or different. It is obvious that the NNR model (7.4) is an extension of both the SSR model (2.10) and the SS ANOVA model (4.31). It may be considered as an extension of the parametric nonlinear regression model with functions in infinite dimensional spaces as parameters.

An interesting special case of the NNR model (7.4) is when $N_i$ depends on $f$ through a nonlinear function and some linear functionals. Specifically,

$$y_i = \psi(L_{1i} f_1, \ldots, L_{ri} f_r) + \epsilon_i, \quad i = 1, \ldots, n,$$

(7.5)
where $\psi$ is a known nonlinear function, and $L_{1i}, \ldots, L_{ri}$ are bounded linear functionals. Model (7.2) for positive constraint is a special case of (7.5) with $r = 1$, $\psi(z) = \exp(z)$ and $L_i f = f(x_i)$. However, model (7.3) for monotonicity constraint cannot be written in the form of (7.5).

### 7.3 Estimation with a Single Function

In this section we restrict our attention to the case when $r = 1$, and drop subscript $k$ for simplicity of notation. Our goal is to estimate the nonparametric function $f$ in $H$.

Assume that $H = H_0 \oplus H_1$, where $H_0 = \text{span}\{\phi_1, \ldots, \phi_p\}$ is an RKHS with RK $R_0$, and $H_1$ is an RKHS with RK $R_1$. We estimate $f$ as the minimizer of the following PLS:

$$\min_{f \in H} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - N_i f)^2 + \lambda \|P_1 f\|^2 \right\}, \quad (7.6)$$

where $P_1$ is a projection operator from $H$ onto $H_1$, and $\lambda$ is a smoothing parameter. We assume that the solution to (7.6) exists and is unique (conditions can be found in the supplement document of Ke and Wang (2004)), and denote the solution as $\hat{f}$.

#### 7.3.1 Gauss–Newton and Newton–Raphson Methods

We first consider the special NNR model (7.5) in this section. Let

$$\eta_i(x) = L_i(x) = L_i(z) R(x, z) = L_i(z) R_0(x, z) + L_i(z) R_1(x, z) \triangleq \delta_i(x) + \xi_i(x).$$

Then $\eta_i \in S$, where $S = H_0 \oplus \text{span}\{\xi_1, \ldots, \xi_n\}$. Any $f \in H$ can be decomposed into $f = \varsigma_1 + \varsigma_2$, where $\varsigma_1 \in S$ and $\varsigma_2 \in S^c$. Furthermore, $L_i f = L_i \varsigma_1$. Denote

$$\text{LS}(\psi(L_1 f), \ldots, \psi(L_n f)) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \psi(L_i f))^2$$

as the least squares. Then the penalized least squares

$$\text{PLS}(\psi(L_1 f), \ldots, \psi(L_n f))$$

is given by:

$$\text{PLS}(\psi(L_1 f), \ldots, \psi(L_n f)) = \text{LS}(\psi(L_1 f), \ldots, \psi(L_n f)) + \lambda \|P_1 f\|^2$$

$$= \text{LS}(\psi(L_1 \varsigma_1), \ldots, \psi(L_n \varsigma_1)) + \lambda \|P_1 \varsigma_1\|^2$$

$$\geq \text{LS}(\psi(L_1 \varsigma_1), \ldots, \psi(L_n \varsigma_1)) + \lambda \|P_1 \varsigma_1\|^2$$

$$= \text{PLS}(\psi(L_1 \varsigma_1), \ldots, \psi(L_n \varsigma_1)).$$
Equality holds iff \( \|P_1\varsigma_2\| = \|\varsigma_2\| = 0 \). Thus the minimizer of the PLS falls in the finite dimensional space \( \mathcal{S} \), which can be represented as

\[
\hat{f}(x) = \sum_{\nu=1}^{p} d_{\nu} \phi_{\nu}(x) + \sum_{i=1}^{n} c_i \xi_i(x). \tag{7.7}
\]

The representation in (7.7) is an extension of the Kimeldorf–Wahba representer theorem. Let \( c = (c_1, \ldots, c_n)^T \) and \( d = (d_1, \ldots, d_p)^T \). Based on (7.7), the PLS (7.6) becomes

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \psi(L_i \hat{f}))^2 + \lambda c^T \Sigma c, \tag{7.8}
\]

where \( L_i \hat{f} = \sum_{\nu=1}^{p} d_{\nu} L_i \phi_{\nu} + \sum_{j=1}^{n} c_j L_j \xi_j \), and \( \Sigma = \{L_i L_j R_{1}\}_{i,j=1}^{n} \).

We need to find minimizers \( c \) and \( d \). Standard nonlinear optimization procedures can be employed to solve (7.8). We now describe the Gauss–Newton and Newton–Raphson methods.

We first describe the Gauss–Newton method. Let \( c_{-}, d_{-} \), and \( \hat{f}_{-} \) be the current approximations of \( c \), \( d \), and \( \hat{f} \), respectively. Replacing \( \psi(L_i \hat{f}) \) by its first-order expansion at \( L_i \hat{f}_{-} \),

\[
\psi(L_i \hat{f}) \approx \psi(L_i \hat{f}_{-}) - \psi'(L_i \hat{f}_{-}) L_i \hat{f}_{-} + \psi'(L_i \hat{f}_{-}) L_i \hat{f}, \tag{7.9}
\]

the PLS (7.8) can be approximated by

\[
\frac{1}{n} \| \tilde{y} - V(Td + \Sigma c) \|^2 + \lambda c^T \Sigma c, \tag{7.10}
\]

where \( \tilde{y}_i = y_i - \psi(L_i \hat{f}_{-}) + \psi'(L_i \hat{f}_{-}) L_i \hat{f}_{-} + \psi'(L_i \hat{f}_{-}) L_i \hat{f}, \quad \tilde{y} = (\tilde{y}_1, \ldots, \tilde{y}_n)^T, \quad V = \text{diag}(\psi'(L_1 \hat{f}_{-}), \ldots, \psi'(L_n \hat{f}_{-})), \quad T = \{L_i \phi_{\nu}\}_{i=1}^{n}_{\nu=1}^{p} \).

Assume that \( V \) is invertible, and let \( \tilde{T} = VT, \quad \tilde{\Sigma} = V \Sigma V, \quad \tilde{c} = V^{-1}c, \) and \( \tilde{d} = d \).

Then the approximated PLS (7.10) reduces to

\[
\frac{1}{n} \| \tilde{y} - \tilde{T} \tilde{d} - \tilde{T} \tilde{\Sigma} \tilde{c} \|^2 + \lambda \tilde{c}^T \tilde{\Sigma} \tilde{c}, \tag{7.11}
\]

which has the same form as (2.19). Thus the Gauss–Newton method updates \( c \) and \( d \) by solving

\[
\begin{align*}
(\tilde{\Sigma} + n \lambda I) \tilde{c} + \tilde{T} \tilde{d} &= \tilde{y}, \\
\tilde{T}^T \tilde{c} &= 0. \tag{7.12}
\end{align*}
\]

Equations in (7.12) have the same form as those in (2.21). Therefore, the same method in Section 2.4 can be used to compute \( \tilde{c} \) and \( \tilde{d} \). New
estimates of $c$ and $d$ can be derived from $c = V\tilde{c}$ and $d = \tilde{d}$. It is easy to see that the equations in (7.12) are equivalent to
\[
(S + n\lambda V^{-2})c + Td = V^{-1}\tilde{y},
\]
\[
T^Tc = 0,
\]
which have the same form as those in (5.6).

We next describe the Newton–Raphson method. Let
\[
I(c, d) = \frac{1}{2} \sum_{i=1}^{n} \left( y_i - \psi\left( \sum_{\nu=1}^{p} d_{\nu} L_{\nu} \phi_{\nu} + \sum_{j=1}^{n} c_j L_j \xi_j \right) \right)^2.
\]

Let $\psi = (\psi(\mathcal{L}_1 \hat{f}_-), \ldots, \psi(\mathcal{L}_n \hat{f}_-))^T$, $u = -V(y - \psi)$, where $V$ is defined above, $O = \text{diag}((y_1 - \psi(\mathcal{L}_1 \hat{f}_-))\psi''(\mathcal{L}_1 \hat{f}_-), \ldots, (y_n - \psi(\mathcal{L}_n \hat{f}_-))\psi''(\mathcal{L}_n \hat{f}_-))$, and $W = V^2 - O$. Then $\partial I/\partial c = -\Sigma V(y - \psi) = \Sigma u$, $\partial I/\partial d = -T^T V(y - \psi) = T^T u$, $\partial^2 I/\partial c\partial d^T = \Sigma W \Sigma$, and $\partial^2 I/\partial d\partial d^T = T^T WT$. The Newton–Raphson iteration satisfies the following equations
\[
\begin{pmatrix}
\Sigma W \Sigma + n\lambda \Sigma & \Sigma WT \\
T^T W \Sigma & T^T WT
\end{pmatrix}
\begin{pmatrix}
c - c_- \\
d - d_-
\end{pmatrix}
= \begin{pmatrix}
-\Sigma u - n\lambda \Sigma c_- \\
-T^T u
\end{pmatrix}.
\]

Assume that $W$ is positive definite. It is easy to see that solutions to
\[
(S + n\lambda W^{-1})c + Td = \hat{f}_- - W^{-1} u,
\]
\[
T^Tc = 0,
\]
are also solutions to (7.14), where $\hat{f}_- = (\mathcal{L}_1 \hat{f}_-, \ldots, \mathcal{L}_n \hat{f}_-)^T$. Again, the equations in (7.15) have the same form as those in (5.6). Methods in Section 5.2.1 can be used to solve (7.15).

Note that, when $O$ is ignored, $W = V^2$, and $V^{-1}\tilde{y} = \hat{f}_- - W^{-1} u$. Then, equations in (7.13) are the same as those in (7.15), and the Newton–Raphson method is the same as the Gauss–Newton method.

### 7.3.2 Extended Gauss–Newton Method

We now consider the estimation of the general NNR model (7.4). In general, the solution to the PLS (7.6) $\hat{f}$ no longer falls in a finite dimensional space. Therefore, certain approximation is necessary.

Let $f$ be a fixed element in $\mathcal{H}$. A nonlinear functional $\mathcal{N}$ on $\mathcal{H}$ is called Fréchet differentiable at $f$ if there exists a bounded linear functional $DN(f)$ such that (Debnath and Mikusiński 1999)
\[
\lim_{||h|| \to 0} \frac{||\mathcal{N}(f + h) - \mathcal{N}(f) - DN(f)(h)||}{||h||} = 0.
\]
Denote \( \hat{f}_- \) as the current approximation of \( \hat{f} \). Assume that \( \mathcal{N}_i \) are Fréchet differentiable at \( \hat{f}_- \) and denote \( \mathcal{D}_i = D \mathcal{N}_i(f_-) \). Note that \( \mathcal{D}_i \) are known bounded linear functionals at the current approximation. The best linear approximation of \( \mathcal{N}_i \) near \( \hat{f}_- \) is (Debnath and Mikusiński 1999)

\[
\mathcal{N}_i \hat{f} \approx \mathcal{N}_i \hat{f}_- + \mathcal{D}_i (f - \hat{f}_-).
\]

(7.16)

Based on the linear approximation (7.16), the NNR model can be approximated by

\[
\tilde{y}_i = \mathcal{D}_i \hat{f} + \epsilon_i, \quad i = 1, \ldots, n,
\]

(7.17)

where \( \tilde{y}_i = y_i - \mathcal{N}_i \hat{f}_- + \mathcal{D}_i \hat{f}_- \). We minimize

\[
\frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - \mathcal{D}_i f)^2 + \lambda \| P_1 f \|^2
\]

(7.18)

to get a new approximation of \( \hat{f} \). Since \( \mathcal{D}_i \) are bounded linear functionals, the solution to (7.18) has the form

\[
\tilde{f} = \sum_{\nu=1}^{p} \tilde{d}_\nu \phi_\nu(x) + \sum_{i=1}^{n} \tilde{c}_i \tilde{\xi}_i(x),
\]

(7.19)

where \( \tilde{\xi}_i(x) = \mathcal{D}_i(\xi) \). Coefficients \( \tilde{c}_i \) and \( \tilde{d}_\nu \) can be calculated using the same method in Section 2.4. An iterative algorithm can then be formed with the convergent solution as the final approximation of \( \hat{f} \). We refer to this algorithm as the extended Gauss–Newton (EGN) algorithm since it is an extension of the Gauss–Newton method to infinite dimensional spaces.

Note that the linear functionals \( \mathcal{D}_i \) depend on the current approximation \( \hat{f}_- \). Thus, representers \( \tilde{\xi}_i \) change along iterations. This approach adaptively chooses representers to approximate the PLS estimate \( \hat{f} \). As in nonlinear regression, the performance of this algorithm depends largely on the curvature of the nonlinear functional. Simulations indicate that the EGN algorithm works well and converges quickly for commonly used nonlinear functionals. For the special NNR model (7.5), it can be shown that the EGN algorithm is equivalent to the standard Gauss–Newton method presented in Section 7.3.1 (Ke and Wang 2004).

An alternative approach is to approximate \( \hat{f} \) by a finite series and solve coefficients using the Gauss–Newton or the Newton–Raphson algorithm. When a finite series with good approximation property is available, this approach may be preferable since it is relatively easy to implement.
However, the choice of such a finite series may become difficult in certain situations. The EGN approach is fully automatic and adaptive. On the other hand, it is more difficult to implement and may become computationally intensive.

### 7.3.3 Smoothing Parameter Selection and Inference

The smoothing parameter $\lambda$ is fixed in Sections 7.3.1 and 7.3.2. We now discuss methods for selecting $\lambda$. Similar to Section 3.4, we define the leaving-out-one cross-validation (CV) criterion as

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (N_i \hat{f}^{[i]}[i] - y_i)^2, \quad (7.20)$$

where $\hat{f}^{[i]}$ is the minimizer of the following PLS

$$\frac{1}{n} \sum_{j \neq i} (y_j - N_j f)^2 + \lambda \|P_1 f\|^2. \quad (7.21)$$

Again, computation of $\hat{f}^{[i]}$ for each $i = 1, \ldots, n$ is costly. For fixed $i$ and $z$, let $h(i, z)$ be the minimizer of

$$\frac{1}{n} (z - N_i f)^2 + \sum_{j \neq i} (y_j - N_j f)^2 + \lambda \|P_1 f\|^2.$$

That is, $h(i, z)$ is the solution to (7.6) when the $i$th observation is replaced by $z$. It is not difficult to check that arguments in Section 3.4 still hold for nonlinear functionals. Therefore, we have the following lemma.

**Leaving-out-one Lemma** For any fixed $i$, $h(i, N_i \hat{f}^{[i]}) = \hat{f}^{[i]}$.

Note that $h(i, y_i) = \hat{f}$. Define

$$a_i \triangleq \frac{\partial N_i h(i, y_i)}{\partial y_i} = DN_i(h(i, y_i)) \frac{\partial h(i, y_i)}{\partial y_i}, \quad (7.22)$$

where $DN_i(h(i, y_i))$ is the Fréchet differential of $N_i$ at $h(i, y_i)$. Let $y_{i[I]} = N_i \hat{f}^{[i]}. \quad$ Applying the leaving-out-one lemma, we have

$$\Delta_i(\lambda) \triangleq \frac{N_i \hat{f} - N_i \hat{f}^{[i]}}{y_i - N_i \hat{f}^{[i]}} = \frac{N_i h(i, y_i) - N_i h(i, y_{i[I]})}{y_i - y_{i[I]}} \approx \frac{\partial N_i h(i, y_i)}{\partial y_i} = a_i.$$

Then

$$y_i - N_i \hat{f}^{[i]} = \frac{y_i - N_i \hat{f}}{1 - \Delta_i(\lambda)} \approx \frac{y_i - N_i \hat{f}}{1 - a_i}.$$
Subsequently, the CV criterion (7.20) is approximated by

\[ CV(\lambda) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{N}_i \hat{f})^2}{(1 - a_i)^2}. \] (7.23)

Replacing \( a_i \) by the average \( \sum_{i=1}^{n} a_i / n \), we have the GCV criterion

\[ GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{N}_i \hat{f})^2}{(1 - \frac{1}{n} \sum_{i=1}^{n} a_i)^2}. \] (7.24)

Note that \( a_i \) in (7.22) depends on \( \hat{f} \), and \( \hat{f} \) may depend on \( y \) nonlinearly. Therefore, unlike the linear case, in general, there is no explicit formula for \( a_i \), and it is impossible to compute the CV or GCV estimate of \( \lambda \) by minimizing (7.24) directly. One approach is to replace \( \hat{f} \) in (7.22) by its current approximation, \( \hat{f} \). This suggests estimating \( \lambda \) at each iteration. Specifically, at each iteration, select \( \lambda \) for the approximating SSR model (7.17) by the standard GCV criterion (3.4). This iterative approach is easy to implement. However, it does not guarantee convergence. Simulations indicate that convergence is achieved in most cases (Ke and Wang 2004).

We use the following connections between an NNR model (7.5) and a nonlinear mixed-effects (NLME) model to extend the GML method.

Consider the following NLME model

\[ y = \psi(\gamma) + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I), \]
\[ \gamma = T d + \Sigma c, \quad c \sim N(0, \sigma^2 \Sigma^+ / n \lambda), \] (7.25)

where \( \gamma = (\gamma_1, \ldots, \gamma_n)^T \), \( \psi(\gamma) = (\psi(\gamma_1), \ldots, \psi(\gamma_n))^T \), \( d \) are fixed effects, \( c \) are random effects, \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \) are random errors independent of \( c \), and \( \Sigma^+ \) is the Moore–Penrose inverse of \( \Sigma \). It is common practice to estimate \( c \) and \( d \) as minimizers of the following joint negative log-likelihood (Lindstrom and Bates 1990)

\[ \frac{1}{n} ||y - \psi(T d + \Sigma c)||^2 + \lambda c^T \Sigma c. \] (7.26)

The joint negative log-likelihood (7.26) and the PLS (7.8) lead to the same estimates of \( c \) and \( d \). In their two-step procedure, at the LME step, Lindstrom and Bates (1990) approximated the NLME model (7.25) by the following linear mixed-effects model

\[ w = X d + Z c + \epsilon, \] (7.27)
where

\[ X = \frac{\partial \psi(Td + \Sigma c)}{\partial d} \bigg|_{c=c_-, d=d_-}, \]
\[ Z = \frac{\partial \psi(Td + \Sigma c)}{\partial c} \bigg|_{c=c_-, d=d_-}, \]
\[ w = y - \psi(Td_- + \Sigma c_-) + Xd_- + Zc_. \]

The subscript minus indicates quantities evaluated at the current iteration. It is not difficult to see that \( w = \tilde{y}, X = VT, \) and \( Z = V\Sigma. \) Therefore, the REML estimate of \( \lambda \) based on the LME model (7.27) is the same as the GML estimate for the approximate SSR model corresponding to (7.12). This suggests an iterative approach by estimating \( \lambda \) for the approximate SSR model (7.17) at each iteration using the GML method.

The UBR method (3.3) may also be used to estimate \( \lambda \) at each iteration. The following algorithm summarizes the above procedures.

**Linearization Algorithm**

1. **Initialize:** \( f = f_0. \)
2. **Linearize:** Update \( f \) by finding the PLS estimate of an approximate SSR model with linear functionals. The smoothing parameter \( \lambda \) is estimated using the GCV, GML, or UBR method.
3. Repeat Step 2 until convergence.

For the special model (7.5), the Gauss–Newton method (i.e. solve (7.12)) or the Newton–Raphson method (i.e., solve (7.15)) may be used at Step 2. For the general NNR model (7.4), the EGN method (i.e., fit model (7.17)) may be used at Step 2.

We estimate \( \sigma^2 \) by

\[ \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - N_i \hat{f})^2}{n - \sum_{i=1}^{n} a_i}, \]

where \( a_i \) are defined in (7.22) and computed at convergence.

We now discuss how to construct Bayesian confidence intervals. At convergence, the extended Gauss–Newton method approximates the original model by

\[ \tilde{y}_i^* = D_i^* f + \epsilon_i, \quad i = 1, \ldots, n, \]  

(7.28)

where \( D_i^* = DN_i(\hat{f}) \) and \( \tilde{y}_i^* = y_i - N_i \hat{f} + D_i^* \hat{f}. \) Assume a prior distribution for \( f \) as

\[ F(x) = \sum_{\nu=1}^{p} \zeta_\nu \phi_\nu(x) + \delta^{1/2} U(x), \]
where $\zeta \overset{iid}{\sim} N(0, \kappa)$ and $U(x)$ is a zero-mean Gaussian stochastic process with $\text{Cov}(U(x), U(z)) = R_1(x, z)$. Assume that observations are generated from

$$\tilde{y}_i = D^*_i F + \epsilon_i, \quad i = 1, \ldots, n. \quad (7.29)$$

Since $D^*_i$ are bounded linear functionals, the posterior mean of the Bayesian model (7.29) equals $\hat{f}$. Posterior variances and Bayesian confidence intervals for model (7.29) can be calculated as in Section 3.8. Based on the first-order approximation (7.28), the performances of these approximate Bayesian confidence intervals depend largely on the accuracy of the linear approximation at convergence. The bootstrap method may also be used to construct confidence intervals.

### 7.4 Estimation with Multiple Functions

We now consider the case when $r > 1$. The goal is to estimate non-parametric functions $f = (f_1, \ldots, f_r)$ in model (7.4). Note that $f_k \in \mathcal{H}_k$ for $k = 1, \ldots, r$. Assume that $\mathcal{H}_k = \mathcal{H}_{k0} \oplus \mathcal{H}_{k1}$, where $\mathcal{H}_{k0} = \text{span}\{\phi_{k1}, \ldots, \phi_{kp_k}\}$ and $\mathcal{H}_{k1}$ is an RKHS with RK $R_{k1}$. We estimate $f$ as minimizers of the following PLS

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \mathcal{N}_i(f))^2 + \sum_{k=1}^{r} \lambda_k \|P_{1k} f_k\|^2, \quad (7.30)$$

where $P_{1k}$ are projection operators from $\mathcal{H}_k$ onto $\mathcal{H}_{k1}$, and $\lambda_1, \ldots, \lambda_r$ are smoothing parameters.

The linearization procedures in Section 7.3 may be applied to all functions simultaneously. However, it is usually computationally intensive when $n$ and/or $r$ are large. We use a Gauss–Seidel type algorithm to estimate functions iteratively one at a time.

**Nonlinear Gauss–Seidel Algorithm**

1. *Initialize:* $f_k = f_{k0}$, $k = 1, \ldots, r$.

2. *Cycle:* For $k = 1, \ldots, r, 1, \ldots, r, \ldots$, conditional on the current approximations of $f_1, \ldots, f_{k-1}, f_{k+1}, \ldots, f_r$, update $f_k$ using the linearization algorithm in Section 7.3.

3. Repeat Step 2 until convergence.
Step 2 involves an inner iteration of the linearization algorithm. The convergence of this inner iteration is usually unnecessary, and a small number of iterations is usually good enough. The nonlinear Gauss–Seidel procedure is an extension of the backfitting procedure.

Denote \( \hat{f} \) as the estimate of \( f \) at convergence. Note here that \( \hat{f} \) denotes the estimate of the vector of functions \( f \) rather than the fitted values of a single function. Assume that the Fréchet differentials of \( N_i \) with respect to \( f \) evaluated at \( \hat{f} \), \( D^*_{ki} = D N_i (\hat{f}) \), exist. Then \( D^*_{ki} h = \sum_{k=1}^{r} D^*_{ki} \hat{f}_k \), where \( D^*_{ki} \) is the partial Fréchet differential of \( N_i \) with respect to \( f_k \) evaluated at \( \hat{f} \), \( h = (h_1, \ldots, h_r) \), and \( h_k \in \mathcal{H}_k \) (Flett 1980). Using the linear approximation, the NNR model (7.4) may be approximated by

\[
\tilde{y}_i = \sum_{k=1}^{r} D^*_{ki} f_k + \epsilon_i, \quad i = 1, \ldots, n, \tag{7.31}
\]

where \( \tilde{y}_i = y_i - N_i (\hat{f}) + \sum_{k=1}^{r} D^*_{ki} \hat{f}_k \). The corresponding Bayes model for (7.31) is given in (8.12) and (8.13). Section 8.2.2 provides formulae for posterior means and covariances, and discussion about how to construct Bayesian confidence intervals for functions \( f_k \) in model (7.31). These Bayesian confidence intervals provide approximate confidence intervals for \( f_k \) in the NNR model. Again, the bootstrap method may also be used to construct confidence intervals.

### 7.5 The \texttt{nnr} Function

The function \texttt{nnr} in the \texttt{assist} package is designed to fit the special NNR model (7.5) and when \( \mathcal{L}_i \) are evaluational functionals. Sections 7.6.2 and 7.6.3 provide two example implementations of the EGN method for two NNR models that cannot be fitted by the \texttt{nnr} function.

A typical call is

\[ \text{nnr(formula, func, start)} \]

where \texttt{formula} is a two-sided formula specifying the response variable on the left side of a \( \sim \) operator and an expression for the function \( \psi \) on the right side with \( f_k \) treated as parameters. The argument \texttt{func} inputs a list of formulae, each specifying bases \( \phi_k_1, \ldots, \phi_{kp_k} \) for \( \mathcal{H}_{k_0} \), and RK \( R_{k_1} \) for \( \mathcal{H}_{k_1} \). Each formula in this list has the form

\[ f \sim \text{list( } \sim \phi_1 + \cdots + \phi_{p_k}, \text{rk)} \].
For example, suppose $f = (f_1, f_2)$, where $f_1$ and $f_2$ are functions of an independent variable $x$. Suppose both $f_1$ and $f_2$ are modeled using cubic splines. Then the bases and RKs of $f_1$ and $f_2$ can be specified using

$$\text{func} = \text{list}(f_1(x) \sim \text{list}(\sim x, \text{cubic}(x)), f_2(x) \sim \text{list}(\sim x, \text{cubic}(x)))$$

or simply

$$\text{func} = \text{list}(f_1(x) + f_2(x) \sim \text{list}(\sim x, \text{cubic}(x)))$$

The argument start inputs a vector or an expression that specifies the initial values of the unknown functions.

The method of selecting smoothing parameters is specified by the argument spar. The options spar='v', spar='m', and spar='u' correspond to the GCV, GML, and UBR methods, respectively, with GCV as the default. The option method in the argument control specifies the computational method with method='GN' and method='NR' corresponding to the Gauss–Newton and Newton–Raphson methods, respectively. The default is the Newton–Raphson method.

An object of nnr class is returned. The generic function summary can be applied to extract further information. Approximate Bayesian confidence intervals can be constructed based on the output of the intervals function.

### 7.6 Examples

#### 7.6.1 Nonparametric Regression Subject to Positive Constraint

The exponential transformation in (7.2) may be used to relax the positive constraint for a univariate or multivariate regression function. In this section we use a simple simulation to illustrate how to fit model (7.2) and the advantage of the exponential transformation over simple cubic spline fit.

We generate $n = 50$ samples from model (7.1) with $g(x) = \exp(-6x)$, $x_i$ equally spaced in $[0, 1]$, and $e_i \sim N(0, 0.1^2)$. We fit $g$ with a cubic spline and the exponential transformation model (7.2) with $f$ modeled by a cubic spline:

```r
> n <- 50
> x <- seq(0,1,len=n)
> y <- exp(-6*x)+.1*rnorm(n)
```
Smoothing Spline Nonlinear Regression

\[
\text{ssrfit} <- \text{ssr}(y \sim x, \text{cubic}(x)) \\
\text{nnrfit} <- \text{nnr}(y \sim \exp(f(x)), \text{func} = f(u) \sim \text{list}(-u, \text{cubic}(u)), \text{start} = \text{list}(f = \log(\text{abs}(y) + 0.001)))
\]

where, for simplicity, we used \(\log(|y_i| + 0.001)\) as initial values.

We compute the mean squared error (MSE) as

\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\hat{g}(x_i) - g(x_i))^2,
\]

where \(\hat{g}\) is either the cubic spline fit or the fit based on the exponential transformation model (7.2). The simulation was repeated 100 times. Ignoring the positive constraint, the cubic spline fits have larger MSEs than those based on the exponential transformation (Figure 7.1(a)). Figure 7.1(b) shows observations, the true function, and fits for a typical replication. The cubic spline fit has portions that are negative. The exponential transformation leads to a better fit.

**FIGURE 7.1** (a) Boxplots of MSEs on the logarithmic scale of the cubic spline fits and the fits based on the exponential transformation; and (b) observations (circles), the true function, and estimates for a typical replication.

### 7.6.2 Nonparametric Regression Subject to Monotone Constraint

Consider model (7.1) and suppose that \(g\) is known to be strictly increasing. We relax the constraint by considering the transformed model
Therefore, it cannot be fitted using the current version of the nnr function. We now illustrate how to apply the EGN method in Section 7.3.2 to estimate the function \( f \) in (7.3). A similar procedure may be derived for other situations. See Section 7.6.3 for another example.

For simplicity, we model \( f \) in (7.3) using the cubic spline model space \( W^2_2[0,1] \). Let \( \mathcal{N}_i f = \int_0^{x_i} \exp\{f(s)\} ds \). Then it can be shown that the Fréchet differential of \( \mathcal{N}_i \) at \( \hat{f}_- \) exists, and \( \mathcal{D}_i f = D\mathcal{N}_i(\hat{f}_-)(f) = \int_0^{x_i} \exp\{\hat{f}_-(s)\} f(s) ds \) (Debnath and Mikusiński 1999). Then model (7.3) can be approximated by

\[
\hat{y}_i = \beta + \mathcal{D}_i f + \epsilon_i, \quad i = 1, \ldots, n, \tag{7.32}
\]

where \( \hat{y}_i = y_i - \mathcal{N}_i \hat{f}_- + \mathcal{D}_i \hat{f}_- \). Model (7.32) is a partial spline model. Suppose we use the construction of \( W^2_2[0,1] \) in Section 2.6, where \( \phi_0(x) = k_0(x) = 1 \) and \( \phi_2(x) = k_1(x) = x - 0.5 \) are basis functions for \( \mathcal{H}_0 \), and \( R_1(x,z) = k_2(x)k_2(z) - k_4(|x-z|) \) is the RK for \( \mathcal{H}_1 \). To fit model (7.32) we need to compute \( \hat{y}_i, T = \{\mathcal{D}_i \phi_\nu\}_{i=1}^n \), and \( \Sigma = \{\mathcal{D}_i(\phi_\nu)\mathcal{D}_j(z)R_1(x,z)\}_{i,j=1}^n \). It can be shown that

\[
\begin{align*}
\hat{y}_i &= y_i - \int_0^{x_i} \exp\{\hat{f}_-(s)\} \{1 - \hat{f}_-(s)\} ds, \\
\mathcal{D}_i \phi_1 &= \int_0^{x_i} \exp\{\hat{f}_-(s)\} ds, \\
\mathcal{D}_i \phi_2 &= \int_0^{x_i} \exp\{\hat{f}_-(s)\} (s - 0.5) ds, \\
\mathcal{D}_i(\phi_\nu)\mathcal{D}_j(z)R_1(x,z) &= \int_0^{x_i} \int_0^{x_j} \exp\{\hat{f}_-(s) + \hat{f}_-(t)\} R_1(s,t) ds dt.
\end{align*}
\]

The above integrals do not have closed forms. We approximate them using the Gaussian quadrature method. For simplicity of notation, suppose that \( x \) values are distinct and ordered such that \( x_1 < x_2 < \cdots < x_n \).

Let \( x_0 = 0 \). Write

\[
\int_0^{x_i} \exp\{\hat{f}_-(s)\} ds = \sum_{j=1}^i \int_{x_{j-1}}^{x_j} \exp\{\hat{f}_-(s)\} ds.
\]

We then approximate each integral \( \int_{x_{j-1}}^{x_j} \exp\{\hat{f}_-(s)\} ds \) using Gaussian quadrature with three points. The approximation is quite accurate when \( x_j - x_{j-1} \) is small. More points may be added for wider intervals. We use the same method to approximate integrals \( \int_0^{x_i} \exp\{\hat{f}_-(s)\} \{1 - \hat{f}_-(s)\} ds \)
and \( \int_0^{x_i} \exp\{\hat{f}_-(s)\}(s - 0.5)ds \). Write the double integral

\[
\int_0^{x_i} \int_0^{x_j} \exp\{\hat{f}_-(s) + \hat{f}_-(t)\} R_1(s, t)dsdt
\]

\[
= \sum_{k=1}^i \sum_{l=1}^j \int_{x_{k-1}}^{x_k} \int_{x_{l-1}}^{x_l} \exp\{\hat{f}_-(s) + \hat{f}_-(t)\} R_1(s, t)dsdt.
\]

We then approximate each integral

\[
\int_{x_{k-1}}^{x_k} \int_{x_{l-1}}^{x_l} \exp\{\hat{f}_-(s) + \hat{f}_-(t)\} R_1(s, t)dsdt
\]

using the simple product rule (Evans and Swartz 2000).

The R function `inc` in Appendix B implements the EGN procedure for model (7.3). The function `inc` is available in the `assist` package.

We now use a small-scale simulation to show the advantage of the transformed model (7.3) over simple cubic spline fit. We generate \( n = 50 \) samples from model (7.1) with \( g(x) = 1 - \exp(-6x) \), \( x \) equally spaced in \([0, 1]\), and \( \epsilon_i \overset{iid}{\sim} N(0, 0.1^2) \). We fit \( g \) with a cubic spline and the model (7.3) with \( f \) modeled by a cubic spline, both with the GML choice of the smoothing parameter:

\[
> n \leftarrow 50; x \leftarrow \text{seq}(0,1,\text{len}=n)
> y \leftarrow 1-\exp(-6*x)+.1*\text{rnorm}(n)
> \text{ssrfit} \leftarrow \text{ssr}(y \sim x, \text{cubic}(x), \text{spar}=\text{"m"})
> \text{incfit} \leftarrow \text{inc}(y, x, \text{spar}=\text{"m"})
\]

MSEs are computed as in Section 7.6.1. The simulation was repeated 100 times. Ignoring the monotonicity constraint, cubic spline fits have larger MSEs than those based on model (7.3) (Figure 7.2(a)). Figure 7.2(b) shows observations, the true function, and fits for a typical replication. The cubic spline fit is not monotone. The fit based on model (7.3) is closer to the true function.

If the function \( g \) in model (7.1) is known to be both positive and strictly increasing, then we can consider model (7.3) with an additional constraint \( \beta > 0 \). Writing \( \beta = \exp(\alpha) \), then model (7.3) becomes a semiparametric nonlinear regression model in Section 8.3. A similar EGN procedure can be derived to fit such a model.

Now consider the child growth data consisting of height measurements of a child over one school year. Observations are shown in Figure 7.3(a). We first fit a cubic spline to model (7.1) with the GCV choice of the smoothing parameter. The cubic spline fit, shown in Figure 7.3(a) as the dashed line, is not monotone. It is reasonable to assume that the mean
FIGURE 7.2 (a) Boxplots of MSEs on the logarithmic scale of the cubic spline fits and the fits based on model (7.3); and (b) observations (circles), the true function, and estimates for a typical replication.

FIGURE 7.3 Child growth data, plots of (a) observations (circles), the cubic spline fit (dashed line), and the fit based on model (7.3) with 95% bootstrap confidence intervals (shaded region), and (b) estimate of the velocity of growth with 95% bootstrap confidence intervals (shaded region).

growth function \( g \) in (7.1) is a strictly increasing function. Therefore, we fit model (7.3) using the \texttt{inc} function and compute bootstrap confidence intervals with 10,000 bootstrap samples:

\begin{verbatim}
> library(fda); attach(onechild)
\end{verbatim}
> x <- day/365; y <- height
> onechild.cub.fit <- ssr(y~x, cubic(x))
> onechild.inc.fit <- inc(y, x, spar='m')
> nboot <- 10000; set.seed <- 23057
> yhat <- onechild.inc.fit$y.fit; resi <- y-yhat
> fb <- gb <- NULL; totboot <- 0
> while (totboot<nboot) {
|     | yb <- yhat+sample(resi, replace=T)
|     | tmp <- try(inc(yb, x, spar='m'))
|     | if(class(tmp)=='try-error'&tmp$iter[2]<1.e-6) {
|     |     fb <- cbind(fb,
|     |         (tmp$pred$f-onechild.inc.fit$pred$f)/tmp$sigma)
|     |     gb <- cbind(gb,
|     |         (tmp$pred$y-onechild.inc.fit$pred$y)/tmp$sigma)
|     |     totboot <- totboot+1
> }
> shat <- onechild.inc.fit$sigma
> gl <- onechild.inc.fit$pred$y-
>     shat*apply(gb,1,quantile,prob=.975)
> gu <- onechild.inc.fit$pred$y-
>     shat*apply(gb,1,quantile,prob=.025)
> hl <- exp(onechild.inc.fit$pred$f-
>     shat*apply(fb,1,quantile,prob=.975))/365
> hu <- exp(onechild.inc.fit$pred$f-
>     shat*apply(fb,1,quantile,prob=.025))/365

where gl and gu are lower and upper bounds for the mean function g, and hl and hu are lower and upper bounds for the velocity defined as h(x) = g'(x) = exp{f(x)}. The percentile-t bootstrap confidence intervals were constructed.

The constrained fit based on model (7.3) is shown in Figure 7.3(a) with 95% bootstrap confidence intervals. Figure 7.3(b) shows the estimate of g'(x) with 95% bootstrap confidence intervals. As in Ramsay (1998), the velocity shows three short bursts. Note that Ramsay (1998) used a different transformation, g(x) = \beta_1 + \beta_2 \int_0^x \exp\{\int_0^u w(u)du\} ds, in model (7.1) to relax the monotone constraint. It is easy to see that w(x) = f'(x), where f(x) = log g'(x). Therefore, with respect to the mean function g, the penalty in this section equals \int_0^1 [(\log g'(x))^\prime]^2 dx, and the penalty in Ramsay (1998) equals \int_0^1 [g''(x)/g'(x)]^2 dx.
7.6.3 Term Structure of Interest Rates

In this section we use the bond data to investigate the term structure of interest rate, a concept central to economic and financial theory.

Consider a set of \( n \) coupon bonds from which the interest rate term structure is to be inferred. Denote the current time as zero. Let \( y_i \) be the current price of bond \( i \), \( r_{ij} \) be the payment paid at a future time \( x_{ij} \), \( 0 < x_{i1} < \cdots < x_{im_i}, i = 1, \ldots, n \), \( j = 1, \ldots, m_i \). The pricing model assumes that (Fisher, Nychka and Zervos 1995, Jarrow, Ruppert and Yu 2004)

\[
y_i = \sum_{j=1}^{m_i} r_{ij} g(x_{ij}) + \epsilon_i, \quad i = 1, \ldots, n, \tag{7.33}
\]

where \( g \) is a discount function and \( g(x_{ij}) \) represents the price of a dollar delivered at time \( x_{ij} \), and \( \epsilon_i \) are iid random errors with mean zero and variance \( \sigma^2 \). The goal is to estimate the discount function \( g \) from observations \( y_i \). Assume that \( g \in W^2_2[0,b] \) for a fixed time \( b \) and define \( L_i g = \sum_{j=1}^{m_i} r_{ij} g(x_{ij}) \). Then, it is easy to see that \( L_i \) are bounded linear functionals on \( W^2_2[0,b] \). Therefore, model (7.33) is a special case of the general SSR model (2.10). Consider the cubic spline construction in Section 2.2. Two basis functions of the null space are \( \phi_1(x) = 1 \) and \( \phi_2(x) = x \), and denote the RK of \( \mathcal{H}_1 \) as \( R_1 \). To fit model (7.33) using the \texttt{ssr} function, we need to compute

\[
T = \left\{ \sum_{j=1}^{m_i} r_{ij} \phi_{\nu}(x_{ij}) \right\}_{i=1}^{n} = XS,
\]

where \( S = (\phi_1, \phi_2) \) and \( \phi_{\nu} = (\phi_{\nu}(x_{11}), \ldots, \phi_{\nu}(x_{1m_1}), \ldots, \phi_{\nu}(x_{nm_n}))^T \) for \( \nu = 1, 2 \). Similarly, it can be shown that

\[
\Sigma = \left\{ \sum_{k=1}^{m_i} \sum_{l=1}^{m_j} r_{ik} r_{jl} R_1(x_{ik}, x_{jl}) \right\}_{i,j=1}^{n} = XAX^T,
\]

where \( A = (A_{ij})_{n,j=1}^{n} \) and \( A_{ij} = \{ R_1(x_{ik}, x_{jl}) \}_{k=1,j=1}^{m_i m_j} \). Note that \( R_1 \) can be calculated by the \texttt{cubic2} function.

The bond data set contains 78 Treasury bonds and 144 GE (General Electric Company) bonds. We first fit model (7.33) to the Treasury bond and compute estimates of \( g \) at grid points as follows:

```r
> data(bond); attach(bond)
```
> group <- as.vector(table(name[type=='govt']))
> y <- price[type=='govt'][cumsum(group)]
> x <- time[type=='govt']
> r <- payment[type=='govt']
> X <- assist::diagComp(matrix(r,nrow=1),group)
> S <- cbind(1, x)
> T <- X%*%S
> Q <- X%*%cubic2(x)%*%t(x)
> bond.cub.fit.govt <- ssr(y~T-1, Q, spar='m', limnla=c(6,10))
> grid1 <- seq(min(x),max(x),len=100)
> g.cub.p.govt <- cbind(1,grid1)%*%bond.cub.fit.govt$coef$d + cubic2(grid1,x)%*%t(X)%*%bond.cub.fit.govt$coef$c

where \( \text{diagComp} \) is a function in the \texttt{assist} package that constructs the matrix \( X = \text{diag}(r_1,\ldots,r_n) \). We compute bootstrap confidence intervals for \( g \) at grid points as follows:

\[
\text{boot.bond.one} \leftarrow \text{function}(x, y, yhat, X, T, Q, spar='m', limnla=c(-3,6), grid, nboot, seed=0) \{ \\
\text{set.seed} \leftarrow \text{seed} \\
\text{resi} \leftarrow y-yhat \\
\text{gb} \leftarrow \text{NULL} \\
\text{for}(i \in 1:\text{nboot}) \{ \\
\text{yb} \leftarrow \text{yhat} + \text{sample(resi, replace=TRUE)} \\
\text{tmp} \leftarrow \text{try(ssr(yb~T-1, Q, spar=spar, limnla=c(-3,6)))} \\
\text{if}(\text{class(tmp)}='\text{try-error}') \text{gb} \leftarrow \text{cbind(gb, cbind(1,grid))} + \\
\text{cubic2(grid,x)%*%t(X)%*%tmp$coef$d + cubic2(grid,x)%*%t(X)%*%tmp$coef$c} \\
\} \\
\text{return(gb)} \\
\}
\]

\( \text{g.cub.b.govt} \leftarrow \text{boot.bond.one}(x, y, yhat=bond.cub.fit.govt$fit, X, T, Q, grid=grid1, nboot=5000, seed=3498) \)

\( \text{gl} \leftarrow \text{apply}(\text{g.cub.b.govt}, 1, \text{quantile, prob=.025}) \)

\( \text{gu} \leftarrow \text{apply}(\text{g.cub.b.govt}, 1, \text{quantile, prob=.975}) \)

where \( \text{gl} \) and \( \text{gu} \) are lower and upper bounds for the discount function \( g \), and the 95% percentile bootstrap confidence intervals were computed based on 5,000 bootstrap samples. Model (7.33) for the GE bond can be fitted similarly. The estimates of discount functions and bootstrap confidence intervals for the Treasury and GE bonds are shown in Figure 7.4(a).
The discount function $g$ is required to be positive, decreasing, and satisfy $g(0) = 1$. These constraints are ignored in the above direct estimation. One simple approach to dealing with these constraints is to represent $g$ by

$$g(x) = \exp \left\{ - \int_0^x f(s) ds \right\}, \quad (7.34)$$

FIGURE 7.4 Bond data, plots of (a) unconstrained estimates of the discount function for Treasury bond (solid line) and GE bond (dashed line) based on model (7.33) with 95% bootstrap confidence intervals (shaded regions), (b) constrained estimates of the discount function for Treasury bond (solid line) and GE bond (dashed line) based on model (7.35) with 95% bootstrap confidence intervals (shaded regions), (c) estimates of the forward rate for Treasury bond (solid line) and GE bond (dashed line) based on model (7.35) with 95% bootstrap confidence intervals (shaded regions), and (d) estimates of the credit spread based on model (7.35) with 95% bootstrap confidence intervals (shaded region).
where \( f(s) \geq 0 \) is the so-called forward rate. Reparametrization (7.34) takes care of all constraints on \( g \). The goal now is to estimate the forward rate \( f \). Assuming \( f \in W_2^2[0, b] \) and replacing \( g \) in (7.33) by (7.34) leads to the following NNR model

\[
y_i = \sum_{j=1}^{m_i} r_{ij} \exp \left\{ - \int_0^{x_{ij}} f(s) \, ds \right\} + \epsilon_i, \quad i = 1, \ldots, n. \quad (7.35)
\]

For simplicity, the nonnegative constraint on \( f \) is not enforced since its estimate is not close to zero. When necessary, the nonnegative constraint can be enforced with a further reparametrization of \( f \) such as \( f = \exp(h) \).

The R function \texttt{one.bond} in Appendix C implements the EGN algorithm to fit model (7.35) for a single bond. For example, we can fit model (7.35) to Treasury bond as follows:

\[
\text{bond.nnr.fit.govt} <- \text{one.bond}(\text{price} = \text{price[type=='govt']}, \text{payment} = \text{payment[type=='govt']}, \text{time} = \text{time[type=='govt']}, \text{name} = \text{name[type=='govt']})
\]

In the following, we model Treasury and GE bonds jointly. Assume that

\[
y_{ki} = \sum_{j=1}^{m_{ki}} r_{kij} \exp \left[ - \int_0^{x_{kij}} \left( f_1(s) + f_2(s) \delta_{k,2} \right) ds \right] + \epsilon_{ki}, \quad k = 1, 2; \quad i = 1, \ldots, n_k, \quad (7.36)
\]

where \( k \) represents bond type with \( k = 1 \) and \( k = 2 \) corresponding to Treasury and GE bonds, respectively, \( y_{ki} \) is the current price for bond \( i \) of type \( k \), \( r_{kij} \) are future payments for bond \( i \) of type \( k \), \( \delta_{k,2} \) is the Kronecker delta, \( f_1 \) is the forward rate for Treasury bond, and \( f_2 \) represents the difference between GE and Treasury bonds (also called the credit spread). We assume that \( f_1, f_2 \in W_2^2[0, b] \). Model (7.36) is a general NNR model with two functions \( f_1 \) and \( f_2 \). It cannot be fitted directly by the \texttt{nnr} function. We now describe how to implement the nonlinear Gauss–Seidel algorithm to fit model (7.36).

Denote the current estimates of \( f_1 \) and \( f_2 \) as \( \hat{f}_{1-} \) and \( \hat{f}_{2-} \), respectively. First consider updating \( f_1 \) for fixed \( f_2 \). The Fréchet differential of \( N_i \) with respect to \( f_1 \) at current estimates \( \hat{f}_{1-} \) and \( \hat{f}_{2-} \) is

\[
\mathcal{D}_{k_i} h = - \sum_{j=1}^{m_{ki}} r_{kij} \exp \left[ - \int_0^{x_{kij}} \left\{ \hat{f}_{1-}(s) + \hat{f}_{2-}(s) \delta_{k,2} \right\} ds \right] \int_0^{x_{kij}} h(s) ds
\]

\[
= - \sum_{j=1}^{m_{ki}} r_{kij} w_{kij} \int_0^{x_{kij}} h(s) ds,
\]
where $w_{kij} = \exp \left[ - \int_0^{z_{kij}} \{ \hat{f}_1(s) + \hat{f}_2(s) \phi_{k,2} \} ds \right]$. Let

$$
\tilde{y}_{k,i} = \sum_{j=1}^{m_k} r_{kij} w_{kij} (1 + f_{kij}) - y_{ki},
$$

$$
\mathcal{L}_{k,1} f_1 = \sum_{j=1}^{m_k} r_{kij} w_{kij} \int_0^{z_{kij}} f_1(s) ds,
$$

where $f_{kij} = \int_0^{z_{kij}} \hat{f}_1(s) ds$. We need to fit the following SSR model

$$
\tilde{y}_{k,i} = \mathcal{L}_{k,1} f_1 + \epsilon_{ki}, \quad k = 1, 2; \ i = 1, \ldots, n_k, \quad (7.37)
$$

to update $f_1$. Let $T_k = \left\{ \mathcal{L}_{k,1} \phi_{\nu} \right\}_{i=1}^{n_k} = 1/2$ for $k = 1, 2$, $T = (T_1^T, T_2^T)^T$, $\Sigma_{uv} = \left\{ \mathcal{L}_{uv} \right\}_{i=1}^{n_u} = \left\{ \mathcal{L}_{uv} \right\}_{i=1}^{n_u}$ for $u, v = 1, 2$, and $\Sigma = \Sigma_{uv}^2 = \Sigma_{uv}$. To fit model (7.37) using the \texttt{ssr} function, we need to compute matrices $T$ and $\Sigma$. Define $b_{ki} = (r_{k1}, \ldots, r_{k1}, w_{k1,1})$ and $X_k = \text{diag}(b_{k1}, \ldots, b_{kn_k})$ for $k = 1, 2$. Define

$$
\psi_{k} = \left( \int_0^{x_{k1,1}} \phi_{\nu}(s) ds, \ldots, \int_0^{x_{kn_1,1}} \phi_{\nu}(s) ds, \ldots, \int_0^{x_{kn,1}} \phi_{\nu}(s) ds, \ldots, \right)^T, \quad \nu = 1, 2; \ k = 1, 2,
$$

$$
S_k = (\psi_{k1}, \psi_{k2}), \quad k = 1, 2,
$$

$$
\Lambda_{uv,ij} = \left\{ \int_0^{x_{ui,k}} \int_0^{x_{vj,l}} R_1(s, t) ds dt \right\}_{i=1}^{n_u} = 1, \quad u, v = 1, 2;
$$

$$
\Lambda_{uv,ij} = \left\{ \Lambda_{uv,ij} \right\}_{j=1}^{n_v} = 1, \quad u, v = 1, 2.
$$

Then it can be shown that

$$
T_k = \left\{ \sum_{j=1}^{m_k} r_{kij} w_{kij} \int_0^{z_{kij}} \phi_{\nu}(s) ds \right\}_{i=1}^{n_k} = X_k S_k, \quad k = 1, 2,
$$

$$
\Sigma_{uv} = \left\{ \sum_{k=1}^{m_u} \sum_{l=1}^{m_v} r_{ul} w_{ul} R_1(s, t) ds dt \right\}_{i=1}^{n_u} = 1, \quad u, v = 1, 2
$$

As in Section 7.6.2, integrals $\int_0^{z_{kij}} \phi_{\nu}(s) ds$ and $\int_0^{z_{kij}} \int_0^{z_{vij}} R_1(s, t) ds dt$ are approximated using the Gaussian quadrature method. Note that these integrals do not change along iterations. Therefore, they only need to be computed once.
Next we consider updating $f_2$ with fixed $f_1$. The Fréchet differential of $N_i$ at current estimates $\hat{f}_1$ and $\hat{f}_2$ is

$$D_{ki}h = -\sum_{j=1}^{m_{ki}} r_{kij}\delta_{k,2} \exp \left[ -\int_{x_{kij}}^{x_{kij}} \{ \hat{f}_1(s) + \hat{f}_2(s) \delta_{k,2} \} ds \right] \times \int_{x_{kij}}^{x_{kij}} h(s) ds.$$  

Note that $D_{ki}h = 0$ when $k = 1$. Therefore, we use observations with $k = 2$ only at this step. Let

$$\tilde{y}_{2i,2} = \frac{1}{m_{2i}} \sum_{j=1}^{m_{2i}} r_{2ij} w_{2ij} (1 + f_{2ij,2}) - y_{2i},$$

$$L_{2i,2}f = \frac{1}{m_{2i}} \sum_{j=1}^{m_{2i}} r_{2ij} w_{2ij} \int_{x_{2ij}}^{x_{2ij}} f(s) ds,$$

where $f_{2ij,2} = \int_{0}^{x_{2ij}} \hat{f}_2(s) ds$. We need to fit the following SSR model

$$\tilde{y}_{2i,2} = L_{2i,2}f_2 + \epsilon_{2i}, \quad i = 1, \ldots, n_2,$$  

(7.38)

to update $f_2$. It can be shown that

$$\{L_{2i,2}f_2\}_{i=1}^{n_2} = T_2,$$

$$\{L_{2i,2}L_{2j,2}R_1\}_{i=1}^{n_2} = \Sigma_{22}.$$

The R function `two.bond` in Appendix C implements the nonlinear Gauss-Seidel algorithm to fit model (7.36) for two bonds. For example, we can fit model (7.36) to the bond data and 5,000 bootstrap samples as follows:

```r
> bond.nnr.fit <- two.bond(price=price, payment=payment,
 time=time, name=name, type=type, spar="m")
> boot.bond.two <- function(y, yhat, price, payment, time,
 name, type, spar="m", limnla=c(-3,6), nboot, seed=0) {
 set.seed <- seed
 resi <- y-yhat
 group <- c(as.vector(table(name[type=='govt'])),
 as.vector(table(name[type=='ge'])))
 fb <- f2b <- gb <- NULL
 for(i in 1:nboot) {
 price.b <- rep(yhat+sample(resi,replace=TRUE), group)

```
tmp <- try(two.bond(price=price.b, payment=payment, time=time, name=name, type=type))
if(class(tmp)!='try-error'& tmp$iter[2]<1.e-4&tmp$iter[3]==0) {
  fb <- cbind(fb,c(tmp$f.val$f1,tmp$f.val$f2))
  f2b <- cbind(f2b,tmp$f2.val)
  gb <- cbind(gb,c(tmp$dc[[1]],tmp$dc[[2]]))
}
list(fb=fb, f2b=f2b, gb=gb)

> gf.nnr.b <- boot.bond.two(y=bond.nnr.fit$y$y, yhat=bond.nnr.fit$y$yhat, price=price, payment=payment, time=time, name=name, type=type, nboot=5000, seed=2394)

where the function boot.bond.two returns a list of estimates of the discount functions (gb), the forward rates (fb), and the credit spread (fb2). The 95% percentile bootstrap confidence intervals for the discount functions of the Treasury and GE bonds can be computed as follows:

> n1 <- nrow(bond[type=='govt',])
> gl1 <- apply(gf.nnr.b$gb[1:n1,],1,quantile,prob=.025)
> gu1 <- apply(gf.nnr.b$gb[1:n1,],1,quantile,prob=.975)
> gl2 <- apply(gf.nnr.b$gb[-(1:n1),],1,quantile,prob=.025)
> gu2 <- apply(gf.nnr.b$gb[-(1:n1),],1,quantile,prob=.975)

where gl1 and gu1 are lower and upper bounds for the discount function of the Treasury bond, and gl2 and gu2 are lower and upper bounds for the discount function of the GE bond. The 95% percentile bootstrap confidence intervals for the forward rates and credit spread can be computed similarly based on the objects gf.nnr.b$f and gf.nnr.b$f2.

Figures 7.4(b) and 7.4(c) show the estimates for the discount and forward rates, respectively. As expected, the GE discount rate is consistently smaller than that of Treasury bonds, representing a higher risk associated with corporate bonds. To assess the difference between the two forward rates, we plot the estimated credit spread and its 95% bootstrap confidence intervals in Figure 7.4(d). The credit spread is positive when time is smaller than 11 years.

7.6.4 A Multiplicative Model for Chickenpox Epidemic

Consider the chickenpox epidemic data consisting of monthly number of chickenpox in New York City during 1931–1972. Denote $y$ as the
There is a clear seasonal variation within a year that has long been recognized (Yorke and London 1973, Earn, Rohani, Bolker and Grenfell 2000). The seasonal variation was mainly caused by social behavior of children who made close contacts when school was in session, and temperature and humidity, that may affect the survival and transmission of dispersal stages. Thus the seasonal variations were similar over the years. The magnitude of this variation and the average number of cases may change over the years. Consequently, we consider the following multiplicative model

\[ y(x_1, x_2) = g_1(x_2) + \exp\{g_2(x_2)\} \times g_3(x_1) + \epsilon(x_1, x_2), \]  

(7.39)

where \( y(x_1, x_2) \) is the square root of reported cases in month \( x_1 \) of year \( x_2 \); and \( g_1, g_3 \) and \( \exp(g_2) \) represent respectively the yearly mean, the seasonal trend in a year, and the magnitude of the seasonal variation for a particular year. The function \( \exp(g_2) \) is referred to as the amplitude. A bigger amplitude corresponds to a bigger seasonal variation. For simplicity, we assume that random errors \( \epsilon(x_1, x_2) \) are independent with a
constant variance.

To make model (7.39) identifiable, we use the following two side conditions:

(a) \( \int_0^1 g_2(x_2)dx_2 = 0 \). The exponential transformation of \( g_2 \) and this condition make \( g_2 \) identifiable with \( g_3 \): the exponential transformation makes \( \exp(g_2) \) free of a sign change, and \( \int_0^1 g_2(x_2)dx_2 = 0 \) makes \( \exp(g_2) \) free of a positive multiplying constant. This condition can be fulfilled by removing the constant functions from the model space of \( g_2 \).

(b) \( \int_0^1 g_3(x_1)dx_1 = 0 \). This condition eliminates the additive constant making \( g_3 \) identifiable with \( g_1 \). This condition can be fulfilled by removing the constant functions from the model space of \( g_3 \).

We model \( g_1 \) and \( g_2 \) using cubic splines. Specifically, we assume that \( g_1 \in W_2^2[0,1] \) and \( g_2 \in W_2^2[0,1] \oplus \{1\} \), where constant functions are removed from the model space for \( g_2 \) to satisfy the side condition (a). Since the seasonal trend \( g_3 \) is close to a sinusoidal model, we model \( g_3 \) using a trigonometric spline with \( L = D^2 + (2\pi)^2 \) (\( m = 2 \) in (2.70)). That is, \( g_3 \in W_2^2(\text{per}) \oplus \{1\} \) where constant functions are removed from the model space for \( g_3 \) to satisfy the side condition (b). Obviously, the multiplicative model (7.39) is a special case of the NNR model with functions denoted as \( g_1, g_2, \) and \( g_3 \) instead of \( f_1, f_2, \) and \( f_3 \) (the notations of \( f_i \) are saved for an SS ANOVA model later). The multiplicative model (7.39) is fitted as follows:

```r
> data(chickenpox)
> y <- sqrt(chickenpox$count)
> x1 <- (chickenpox$month-0.5)/12
> x2 <- ident(chickenpox$year)
> tmp <- ssr(y~1, rk=periodic(x1), spar="m")
> g3.ini <- predict(tmp, term=c(0,1))$fit
> chick.nnr <- nnr(y~g1(x2)+exp(g2(x2))*g3(x1),
 func=list(g1(x)~list(~I(x-.5),cubic(x)),
 g2(x)~list(~I(x-.5)-1,cubic(x)),
 g3(x)~list(~sin(2*pi*x)+cos(2*pi*x)-1,
 lspline(x,type="sine0"))),
 start=list(g1=mean(y),g2=0,g3=g3.ini),
 control=list(converg="coef"),spar="m")
> grid <- data.frame(x1=seq(0,1,len=50),
 x2=seq(0,1,len=50))
> chick.nnrr.pred <- intervals(chick.nnr, newdata=grid,
 terms=list(g1=matrix(c(1,1,1,1,1,0,0,0,1),

```
We first fitted a periodic spline with variable $x_1$ only and used the fitted values to the smooth component as initial values for $g_3$. We used the average of $y$ as the initial value for $g_1$ and constant zero as the initial value for $g_2$. The intervals function was used to compute approximate means and standard deviations for functions $g_1$, $g_2$, and $g_3$ and their projections. The estimates of $g_1$ and $g_2$ are shown in Figure 7.6. We also superimpose yearly averages in Figure 7.6(a) and the logarithm of scaled ranges in Figure 7.6(b). The scaled range of a specific year was calculated as the differences between the maximum and the minimum monthly number of cases divided by the range of the estimated seasonal trend $g_3$. It is clear that $g_1$ captures the long-term trend in the mean, and $g_2$ captures the long-term trend in the range of the seasonal variation. From the estimate of $g_1$ in Figure 7.6(a), we can see that yearly averages peaked in the 1930s and 1950s, and gradually decreased in the 1960s after the introduction of mass vaccination. The amplitude reflects the seasonal variation in the transmission rate (Yorke and London 1973). From the estimate of $g_2$ in Figure 7.6(b), we can see that the magnitude of the seasonal variation peaked in the 1950s and then declined in the 1960s. From the estimate of $g_3$ in Figure 7.6(b), we can see that yearly averages peaked in the 1950s and 1960s, and gradually decreased in the 1970s after the introduction of mass vaccination. The amplitude reflects the seasonal variation. To check the multiplicative model (7.39), we use the SS ANOVA decomposition in (4.21) and consider the following SS ANOVA model:

\[ y(x_1, x_2) = \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2) + \epsilon(x_1, x_2), \]  

(7.40)

where $\mu$ is a constant, $f_1$ and $f_2$ are overall main effects of month and year, and $f_{12}$ is the overall interaction between month and year. Noting that side conditions $\int f_{12} dx_1 = \int f_{12} dx_2 = \int f_{12} dx_1 dx_2 = 0$ are satisfied by the SS ANOVA decomposition. It is not difficult to check that the null space $H_{30} = \text{span}\{\sin 2\pi x, \cos 2\pi x\}$ (the simple sinusoidal model), and its projection onto the null space $H_{30}$ is significantly different from zero. Since the projection onto the complement space is significantly different from zero, a simple sinusoidal model does not provide an accurate approximation.

To check the multiplicative model (7.39), we use the SS ANOVA decomposition in (4.21) and consider the following SS ANOVA model:
that model (7.40) reduces to model (7.39) iff

\[ \mu = \int_0^1 g_1 dx_2, \]

\[ f_1(x_1) = \left\{ \int_0^1 \exp(g_2) dx_2 \right\} g_3(x_1), \]

\[ f_2(x_2) = g_1(x_2) - \int_0^1 g_1 dx_2, \]

\[ f_{12}(x_1, x_2) = \left[ \exp\{g_2(x_2)\} - \int_0^1 \exp(g_2) dx_2 \right] g_3(x_1). \]
Thus the multiplicative model assumes a multiplicative interaction.

We fit the SS ANOVA model (7.40) and compare it with the multiplicative model (7.39) using AIC, BIC, and GCV criteria:

```r
> chick.ssanova <- ssr(y~x2,
 rk=list(periodic(x1),cubic(x2),
 rk.prod(periodic(x1),kron(x2-.5)),
 rk.prod(periodic(x1),cubic(x2))))
> n <- length(y)
> rss <- c(sum(chick.ssanova$resi**2),
 sum(chick.nnr$resi**2))/n
> df <- c(chick.ssanova$df, chick.nnr$df$f)
> gcv <- rss/(1-df/n)**2
> aic <- n*log(rss)+2*df
> bic <- n*log(rss)+log(n)*df
> print(round(rbind(gcv,aic,bic),2))
gcv 8.85 14.14
aic 826.75 1318.03
bic 1999.38 1422.83
```

The AIC and GCV criteria select the SS ANOVA model, while the BIC selects the multiplicative model. The SS ANOVA model captures local trend, particularly biennial pattern from 1945 to 1955, better than the multiplicative model (Figure 7.5).

7.6.5 A Multiplicative Model for Texas Weather

The domains for variables $x_1$ and $x_2$ in the multiplicative model (7.39) are not limited to continuous intervals. As the NNR model, these domains may be arbitrary sets. We now revisit the Texas weather data to which an SS ANOVA model has been fitted in Section 4.9.4. We have defined $x_1 = (\text{lat}, \text{long})$ as the geological location of a station, and $x_2$ as the month variable scaled into $[0,1]$. For illustration purposes only, assuming that temperature profiles from all stations have the same shape except a vertical shift and scale transformation that may depend on geographical location, we consider the following multiplicative model

$$y(x_1, x_2) = g_1(x_1) + \exp\{g_2(x_1)\} \times g_3(x_2) + \epsilon(x_1, x_2), \quad (7.41)$$

where $y(x_1, x_2)$ is the average temperature of month $x_2$ at location $x_1$, $g_1$ and $\exp(g_2)$ represent, respectively, the mean and magnitude of the seasonal variation at location $x_1$, and $g_3(x_2)$ represents the seasonal trend in a year. For simplicity, we assume that random errors $\epsilon(x_1, x_2)$ are independent with a constant variance. We model functions $g_1$ and
using thin-plate splines, and \( g_3 \) using a periodic spline. Specifically, for identifiability, we assume that \( g_1 \in W^2_2(\mathbb{R}^2) \), \( g_2 \in W^2_2(\mathbb{R}^2) \setminus \{1\} \), and \( g_3 \in W^2_2(\text{per}) \setminus \{1\} \). Model (7.41) is fitted as follows:

\[
\begin{align*}
> g3.ini & \leftarrow \text{predict(ssr(y~1,rk=periodic(x2),data=tx.dat, spar='m'), terms=c(0,1), pstd=F)$fit} \\
> tx.nnr & \leftarrow \text{nrr}(y^g1(x11,x12)+\exp(g2(x11,x12))*g3(x2), \\
& \text{func=list(g1(x,z)^list(~x+z,tp(list(x,z))),} \\
& g2(x,z)^list(~x+z-1,tp(list(x,z))), \\
& g3(x)^list(\text{periodic(x))),} \\
& \text{data=tx.dat, start=list(g1=mean(y),g2=0,g3=g3.ini))}
\end{align*}
\]

The estimates of \( g_1 \) and \( g_2 \) are shown in Figure 7.8. From northwest to southeast, the temperature gets warmer and the variation during a year gets smaller.

**FIGURE 7.8** Texas weather data, plots of estimates of \( g_1 \) (left) and \( g_2 \) (right).

In Section 4.9.4 we have fitted the following SS ANOVA model

\[
y(x_1, x_2) = \mu + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2) + \epsilon(x_1, x_2), \quad (7.42)
\]

where \( f_1 \) and \( f_2 \) are the overall main effects of location and month, and \( f_{12} \) is the overall interaction between location and month. The overall main effects and interaction are defined in Section 4.4.6. To compare the multiplicative model (7.41) with the SS ANOVA model fitted in Section 4.9.4, we compute GCV, AIC, and BIC criteria:
\begin{verbatim}
> n <- length(y)
> rss <- c(sum(tx.ssanova$resi**2),sum(tx.nnr$resi**2))
> df <- c(tx.ssanova$df,tx.nnr$df$df)
> gcv <- rss/(1-df/n)**2
> aic <- n*log(rss)+2*df
> bic <- n*log(rss)+log(n)*df
> print(rbind(gcv,aic,bic))
gcv 131.5558 434.5253
aic 2661.9293 3481.2111
bic 3730.4315 3894.1836
\end{verbatim}

All criteria choose the SS ANOVA model. One possible reason is that the assumption of common temperature profile for all stations is too restrictive. To look at variation among temperature profiles, we fit each station separately using a periodic spline and compute normalized temperature profiles such that all profiles integrate to zero and have vertical range equal to one. These normalized temperature profiles are shown in Figure 7.9(a). Variation among these temperature profiles may be nonignorable. To further check if the variation among temperature profiles may be accounted for by a horizontal shift, we align all profiles such that all of them reach maximum at point 0.5 and plot the aligned profiles in Figure 7.9(b). Variation among these aligned temperature profiles is again nonignorable.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7_9.png}
\caption{Texas weather data, plots of (a) normalized temperature profiles, and (b) aligned normalized temperature profiles.}
\end{figure}
It is easy to see that the SS ANOVA model (7.42) reduces to the multiplicative model (7.41) iff
\[
    f_{12}(x_1, x_2) = \left[ \frac{\exp\{g_2(x_1)\}}{\sum_{j=1}^{J} w_j \exp\{g_2(u_j)\}} - 1 \right] f_2(x_2), \tag{7.43}
\]
where \( u_j \) are fixed points in \( \mathbb{R}^2 \), and \( w_j \) are fixed positive weights such that \( \sum_{j=1}^{J} w_j = 1 \). Equation (7.43) suggests the following simple approach to check the multiplicative model (7.41): for a fixed station (thus a fixed \( x_1 \)), compute estimates of \( f_2 \) and \( f_{12} \) from the SS ANOVA fit and plot \( f_{12} \) against \( f_2 \) to see if the points fall on a straight line. Figure 7.10 shows plots of \( f_{12} \) against \( f_2 \) for two selected stations. The patterns are quite different from straight lines, especially for the Liberty station. Again, it indicates that the multiplicative model may not be appropriate for this case.

FIGURE 7.10  Texas weather data, plots of \( f_{12} \) against \( f_2 \) for two stations.
Chapter 8
Semiparametric Regression

8.1 Motivation
Postulating strict relationships between dependent and independent variables, parametric models are, in general, parsimonious. Parameters in these models often have meaningful interpretations. On the other hand, based on minimal assumptions about the relationship, nonparametric models are flexible. However, nonparametric models lose the advantage of having interpretable parameters and may suffer from the curse of dimensionality. Often, in practice, there is enough knowledge to model some components in the regression function parametrically. For other vague and/or nuisance components, one may want to leave them unspecified. Combining both parametric and nonparametric components, a semiparametric regression model can overcome limitations in parametric and nonparametric models while maintaining advantages of having interpretable parameters and flexibility.

Many specific semiparametric models have been proposed in the literature. The partial spline model (2.43) in Section 2.10 is perhaps the simplest semiparametric regression model. Other semiparametric models include the projection pursuit, single index, varying coefficients, functional linear, and shape invariant models. A projection pursuit regression model (Friedman and Stuetzle 1981) assumes that

\[ y_i = \beta_0 + \sum_{k=1}^{r} f_k(\beta_k^T x_i) + \epsilon_i, \quad i = 1, \ldots, n, \]  

(8.1)

where \( x \) are independent variables, \( \beta_0 \) and \( \beta_k \) are parameters, and \( f_k \) are nonparametric functions. A partially linear single index model (Carroll, Fan, Gijbels and Wand 1997, Yu and Ruppert 2002) assumes that

\[ y_i = \beta_1^T s_i + f(\beta_2^T t_i) + \epsilon_i, \quad i = 1, \ldots, n, \]  

(8.2)

where \( s \) and \( t \) are independent variables, \( \beta_1 \) and \( \beta_2 \) are parameters, and \( f \) is a nonparametric function. A varying-coefficient model (Hastie and
Tibshirani 1993) assumes that

\[ y_i = \beta_1 + \sum_{k=1}^{r} u_{ik} f_k(x_{ik}) + \epsilon_i, \quad i = 1, \ldots, n, \tag{8.3} \]

where \( x_k \) and \( u_k \) are independent variables, \( \beta_1 \) is a parameter, and \( f_k \) are nonparametric functions.

The semiparametric linear and nonlinear regression models in this chapter include all the foregoing models as special cases. The general form of these models provides a framework for unified estimation, inference, and software development.

### 8.2 Semiparametric Linear Regression Models

#### 8.2.1 The Model

Define a semiparametric linear regression model as

\[ y_i = s_i^T \beta + \sum_{k=1}^{r} \mathcal{L}_{ki} f_k + \epsilon_i, \quad i = 1, \ldots, n, \tag{8.4} \]

where \( s \) is a \( q \)-dimensional vector of independent variables, \( \beta \) is a vector of parameters, \( \mathcal{L}_{ki} \) are bounded linear functionals, \( f_k \) are unknown functions, and \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \sim N(0, \sigma^2 W^{-1}) \). We assume that \( W \) depends on an unknown vector of parameters \( \tau \). Let \( \mathcal{X}_k \) be the domain of \( f_k \) and assume that \( f_k \in \mathcal{H}_k \), where \( \mathcal{H}_k \) is an RKHS on \( \mathcal{X}_k \). Note that the domains \( \mathcal{X}_k \) for different functions may be the same or different.

Model (8.4) is referred to as a semiparametric linear regression model since the mean response depends on \( \beta \) and \( f_k \) linearly. Extension to the nonlinear case will be introduced in Section 8.3. The semiparametric linear regression model (8.4) is an extension of the partial spline model (2.43) by allowing more than one nonparametric function. It is an extension of the additive models by including a parametric component and allowing general linear functionals. Note that some of the functions \( f_k \) may represent main effects and interactions in an SS ANOVA decomposition. Therefore, model (8.4) is also an extension of the SS ANOVA model (5.1) by allowing different linear functionals for different components. It is easy to see that the varying-coefficient model (8.3) is a special case of the semiparametric linear regression model with \( q = 1, s_i = 1, \) and \( \mathcal{L}_{ki} f_k = u_{ik} f_k(x_{ik}) \) for \( k = 1, \ldots, r \). The functional linear models (FLM) are also a special case of the semiparametric linear regression
model (see Section 8.4.1). In addition, random errors are allowed to be correlated and/or have unequal variances.

8.2.2 Estimation and Inference

Assume that $\mathcal{H}_k = \mathcal{H}_{k0} \oplus \mathcal{H}_{k1}$, where $\mathcal{H}_{k0} = \text{span}\{\phi_{k1}, \ldots, \phi_{kn}\}$ and $\mathcal{H}_{k1}$ is an RKHS with RK $R_{k1}$. Let $y = (y_1, \ldots, y_n)^T$, $f = (f_1, \ldots, f_r)$, and $\eta(\beta, f) = (s_i^T \beta + \sum_{k=1}^r \xi_k f_k, \ldots, s_i^T \beta + \sum_{k=1}^r \xi_k f_k)^T$.

For a fixed $W$, we estimate $\beta$ and $f$ as minimizers to the following PWLS

$$
\frac{1}{n} (y - \eta(\beta, f))^T W (y - \eta(\beta, f)) + \lambda \sum_{k=1}^r \theta_k^{-1} \|P_{k1} f_k\|^2,
$$

where $P_{k1}$ is the projection operator onto $\mathcal{H}_{k1}$ in $\mathcal{H}_k$. As in (4.32), different smoothing parameters $\lambda \theta_k^{-1}$ allow different penalties for each function.

For $k = 1, \ldots, r$, let $\xi_{ki}(x) = L_{k1}(x, z)$ and $S_k = \mathcal{H}_{k0} \oplus \text{span}\{\xi_{k1}, \ldots, \xi_{kn}\}$. Let

$$
\text{WLS}(\beta, L_1 f, \ldots, L_n f) = \frac{1}{n} (y - \eta(\beta, f))^T W (y - \eta(\beta, f))
$$

be the weighted LS where $L_i f = (L_{i1} f_1, \ldots, L_{ir} f_r)$. Then the PWLS (8.5) can be written as

$$
\text{PWLS}(\beta, L_1 f, \ldots, L_n f) = \text{WLS}(\beta, L_1 f, \ldots, L_n f) + \lambda \sum_{k=1}^r \theta_k^{-1} \|P_{k1} f_k\|^2.
$$

For any $f_k \in \mathcal{H}_k$, write $f_k = \zeta_{k1} + \zeta_{k2}$, where $\zeta_{k1} \in S_k$ and $\zeta_{k2} \in S_k$. As shown in Section 6.2.1, we have $L_{ki} f_k = L_{ki} \zeta_{k1}$. Then for any $f$,

$$
\text{PWLS}(\beta, L_1 f, \ldots, L_n f) = \text{WLS}(\beta, L_1 f_1, \ldots, L_n f_1) + \lambda \sum_{k=1}^r \theta_k^{-1} (\|P_{k1} \zeta_{k1}\|^2 + \|P_{k1} \zeta_{k2}\|^2)
$$

$$
\geq \text{WLS}(\beta, L_1 f_1, \ldots, L_n f_1) + \lambda \sum_{k=1}^r \theta_k^{-1} \|P_{k1} \zeta_{k1}\|^2
$$

$$
= \text{PWLS}(\beta, L_1 f_1, \ldots, L_n f_1),
$$

where $L_i f_i = (L_{i1} f_{i1}, \ldots, L_{ir} f_{ir})$ for $i = 1, \ldots, n$. Equality holds iff $\|P_{k1} \zeta_{k2}\| = \|\zeta_{k2}\| = 0$ for all $k = 1, \ldots, r$. Thus the minimizers $f_k$ of the PWLS fall in the finite dimensional spaces $S_k$, which can be represented
where the multiplying constants \( \theta_k \) make the solution and notations similar to those for the SS ANOVA models. Note that we only used the fact the WLS criterion depends on some bounded linear functionals \( L_{ki} \) in the foregoing arguments. Therefore, the Kimeldorf–Wahba representer theorem holds in general so long as the goodness-of-fit criterion depends on some bounded linear functionals.

Let \( S = (s_1, \ldots, s_n)^T \), \( T_k = \{ L_{ki}\phi_{k\nu} \}_{i=1}^n \) for \( k = 1, \ldots, r \), \( T = (T_1, \ldots, T_r) \), and \( X = (S \ T) \). Let \( \Sigma_k = \{ L_{ki}L_{kj}R_{k1} \}_{i,j=1}^n \) for \( k = 1, \ldots, r \), and \( \Sigma = \{ L_{ki}f_k, \ldots, L_{kn}f_k \}^T \), \( c_k = (c_{k1}, \ldots, c_{kn})^T \), and \( d_k = (d_{k1}, \ldots, d_{kn})^T \) for \( k = 1, \ldots, r \). Based on (8.6), \( \hat{f}_k = T_k \hat{d}_k + \theta_k \Sigma_k c_k \) for \( k = 1, \ldots, r \).

Let \( d = (d_1^T, \ldots, d_r^T)^T \). The overall fit

\[
\hat{\eta} = S\beta + \sum_{k=1}^r \hat{f}_k = S\beta + Td + \sum_{k=1}^r \theta_k \Sigma_k c_k = X\alpha + \sum_{k=1}^r \theta_k \Sigma_k c_k,
\]

where \( \alpha = (\beta^T, d^T)^T \). Plugging back into (8.5), we have

\[
\frac{1}{n}(y - X\alpha - \sum_{k=1}^r \theta_k \Sigma_k c_k)^T W (y - X\alpha - \sum_{k=1}^r \theta_k \Sigma_k c_k) + \lambda \sum_{k=1}^r \theta_k c_k^T \Sigma_k c_k.
\]

Taking the first derivatives with respect to \( c_k \) and \( \alpha \), we have

\[
\Sigma_k W (y - X\alpha - \sum_{k=1}^r \theta_k \Sigma_k c_k) - n\lambda \Sigma_k c_k = 0, \quad k = 1, \ldots, r,
\]

\[
X^T W (y - X\alpha - \sum_{k=1}^r \theta_k \Sigma_k c_k) = 0.
\]

When all \( \Sigma_k \) are nonsingular, from the first equation in (8.8), we must have \( c_1 = \cdots = c_r \). Setting \( c_1 = \cdots = c_r = c \), it is easy to see that solutions to

\[
(S\theta + n\lambda W^{-1})c + X\alpha = y,
\]

\[
X^T c = 0,
\]

are also solutions to (8.8). Equations in (8.9) have the same form as those in (5.6). Therefore, a similar procedure as in Section 5.2 can be
used to compute coefficients \( c \) and \( d \). Let the QR decomposition of \( X \) be
\[
X = (Q_1 Q_2) \begin{pmatrix} R \\ 0 \end{pmatrix}
\]
and \( M = \Sigma \theta + n\lambda W^{-1} \). Then the solutions
\[
\begin{align*}
  c &= Q_2 (Q_2^T M Q_2)^{-1} Q_2^T y, \\
  d &= R^{-1} Q_1^T (y - M c).
\end{align*}
\] (8.10)

Furthermore,
\[
\hat{\eta} = H(\lambda, \theta, \tau) y,
\]
where
\[
H(\lambda, \theta, \tau) = I - n\lambda W^{-1} Q_2 (Q_2^T M Q_2)^{-1} Q_2^T
\] (8.11)
is the hat matrix.

When \( W \) is known, the UBR, GCV, and GML criteria presented in Section 5.2.3 can be used to estimate the smoothing parameters. We now extend the GML method to estimate the smoothing and covariance parameters simultaneously when \( W \) is unknown.

We first introduce a Bayes model for the semiparametric linear regression model (8.4). Since the parametric component \( s^T \beta \) can be absorbed into any one of the null spaces \( \mathcal{H}_k \) in the setup of a Bayes model, for simplicity of notation, we drop this term in the following discussion. Assume priors for \( f_k \) as
\[
F_k(x_k) = \sum_{\nu=1}^{p_k} \zeta_{k\nu} \phi_{k\nu}(x_k) + \sqrt{\delta \theta_k} U_k(x_k), \quad k = 1, \ldots, r,
\] (8.12)
where \( \zeta_{k\nu} \sim \mathcal{N}(0, \kappa) \), \( U_k(x_k) \) are independent zero-mean Gaussian stochastic processes with covariance function \( R_{k1}(x_k, z_k) \), \( \zeta_{k\nu} \), and \( U_k \) are mutually independent, and \( \kappa \) and \( \delta \) are positive constants. Suppose that observations are generated by
\[
y_i = \sum_{k=1}^{r} \mathcal{L}_{k0} F_k + \epsilon_i, \quad i = 1, \ldots, n.
\] (8.13)

Let \( \mathcal{L}_{k0} \) be a bounded linear functional on \( \mathcal{H}_k \). Let \( \lambda = \sigma^2 / n\delta \). The same arguments in Section 3.6 hold when \( M = \Sigma + n\lambda I \) is replaced by \( M = \Sigma \theta + n\lambda W^{-1} \) in this chapter. Therefore,
\[
\lim_{\kappa \to \infty} E(\mathcal{L}_{k0} F_k | y) = \hat{f}_k, \quad k = 1, \ldots, r,
\]
and an extension of the GML criterion is
\[
\text{GML}(\lambda, \theta, \tau) = \frac{y'W(I - H)y}{\det^+(W(I - H))^{\frac{1}{2}}},
\]
where \(\det^+\) is the product of the nonzero eigenvalues and \(p = \sum_{k=1}^{r} p_k\).

As in Section 5.2.4, we fit the corresponding LME model (5.27) with \(T\) being replaced by \(X\) in this section to compute the minimizers of the GML criterion (8.14).

For clustered data, the leaving-out-one-cluster approach presented in Section 5.2.2 may also be used to estimate the smoothing and covariance parameters.

We now discuss how to construct Bayesian confidence intervals. Any function \(f_k \in \mathcal{H}_k\) can be represented as
\[
f_k = \sum_{\nu=1}^{p_k} f_{0k\nu} + f_{1k},
\]
where \(f_{0k\nu} \in \text{span}\{\phi_{k\nu}\} \) for \(\nu = 1, \ldots, p_k\), and \(f_{1k} \in \mathcal{H}_{k1}\). Our goal is to construct Bayesian confidence interval for
\[
\mathcal{L}_{k0}f_k \gamma_k = \sum_{\nu=1}^{p_k} \gamma_{k\nu} \mathcal{L}_{k0}f_{0k\nu} + \gamma_{k,p_k+1} \mathcal{L}_{k0}f_{1k}
\]
for any bounded linear functional \(\mathcal{L}_{k0}\) on \(\mathcal{H}_k\) and any combination of \(\gamma_k = (\gamma_{k1}, \ldots, \gamma_{kp_k+1})^T\), where \(\gamma_{kj} = 1\) when the corresponding component in (8.15) is to be included and 0 otherwise.

Let \(F_{ij} = \xi_{ij} \phi_{ij}\) for \(\nu = 1, \ldots, p_j\), \(F_{ij} = \sqrt{\theta_{ij}} U_j\), and \(F_{1k} = \sqrt{\theta_{1k}} U_k\) for \(j = 1, \ldots, r\) and \(k = 1, \ldots, r\). Let \(\mathcal{L}_{0j}, \mathcal{L}_{0j1}\) be bounded linear functionals on \(\mathcal{H}_j\), and \(\mathcal{L}_{0k2}\) be a bounded linear functional on \(\mathcal{H}_k\).

**Posterior means and covariances**

For \(j = 1, \ldots, r, \nu = 1, \ldots, p_j\), the posterior means are
\[
E(\mathcal{L}_{0j}F_{0j\nu}|y) = (\mathcal{L}_{0j}\phi_{j\nu})e_{j\nu}^T d, \\
E(\mathcal{L}_{0j}F_{ij}|y) = \theta_j (\mathcal{L}_{0j}\xi_j)^T e.
\]

For \(j = 1, \ldots, r, k = 1, \ldots, r, \nu = 1, \ldots, p_j, \mu = 1, \ldots, p_k\), the posterior covariances are
\[
\delta^{-1} \text{Cov}(\mathcal{L}_{0j1}F_{0j\nu}, \mathcal{L}_{0k2}F_{0k\mu}|y) = (\mathcal{L}_{0j1}\phi_{j\nu})(\mathcal{L}_{0k2}\phi_{k\mu})e_{j\nu}^T A e_{k\mu}, \\
\delta^{-1} \text{Cov}(\mathcal{L}_{0j1}F_{0j\nu}, \mathcal{L}_{0k2}F_{1k}|y) = -\theta_k (\mathcal{L}_{0j1}\phi_{j\nu})e_{j\nu}^T B (\mathcal{L}_{0k2}\xi_k), \\
\delta^{-1} \text{Cov}(\mathcal{L}_{0j1}F_{ij}, \mathcal{L}_{0k2}F_{1k}|y) = \delta_{j,k} \theta_k \mathcal{L}_{0j1} \mathcal{L}_{0k2} R_{k1} - \theta_j \theta_k (\mathcal{L}_{0j1}\xi_j)^T C (\mathcal{L}_{0k2}\xi_k),
\]

where \(\mathcal{L}_{k0}\) is the product of the nonzero eigenvalues and \(p = \sum_{k=1}^{r} p_k\).
where $e_{j,\mu}$ is a vector of dimension $\sum_{l=1}^{r} p_l$ with the $(\sum_{l=1}^{j-1} p_l + \mu)$th element being one and all other elements being zero. $c$ and $d$ are given in the equation (8.10), $L_{0 j 1} \xi_j = (L_{01}^1 R_{j1}, \ldots, L_{0j}^1 R_{j1})^T$, $L_{0k}^2 \xi_k = (L_{0k1}^k R_{k1}, \ldots, L_{0k}^k R_{kn})^T$, $M = \Sigma_{\theta} + n\lambda W^{-1}$, $A = (T^T M^{-1} T)^{-1}$, $B = AT^T M^{-1}$, and $C = M^{-1}(I - B)$. For simplicity of notation, we define $\sum_{l=1}^0 p_l = 0$.

Derivation of the above results can be found in Wang and Ke (2009). Posterior mean and variance of $L_{0f j, \gamma}$ in (8.16) can be calculated using the above formulae. Bayesian confidence intervals for $L_{0f j, \gamma}$ can then be constructed. Bootstrap confidence intervals can also be constructed as in previous chapters.

The semiparametric linear regression model (8.4) can be fitted by the `ssr` function. The independent variables $s$ and null bases $\phi_{k1}, \ldots, \phi_{kp_k}$ for $k = 1, \ldots, r$ are specified on the right-hand side of the formula argument, and RKs $R_{k1}$ for $k = 1, \ldots, r$ are specified in the `rk` argument as a list. For non-iid random errors, variance and/or correlation structures are specified using the arguments `weights` and `correlation`. The argument `spar` specifies a method for selecting the smoothing parameter(s). UBR, GCV, and GML methods are available for the case when $W$ is known, and the GML method is available when $W$ needs to be estimated. The `predict` function can be used to compute posterior means and standard deviations. See Section 8.4.1 for examples.

### 8.2.3 Vector Spline

Suppose we have observations on $r$ dependent variables $z_1, \ldots, z_r$. Assume the following partial spline models:

$$
z_{jk} = s_{jk}^T \beta_k + L_{kj} f_k + \varepsilon_{jk}, \quad k = 1, \ldots, r; \quad j = 1, \ldots, n_k, \quad (8.19)
$$

where $z_{jk}$ is the $j$th observation on $z_k$, $s_{jk}$ is the $j$th observation on a $q_k$-dimensional vector of independent variables $s_k$, $f_k \in \mathcal{H}_k$ is an unknown function, $\mathcal{H}_k$ is an RKHS on an arbitrary set $X_k$, $L_{kj}$ is a bounded linear functional, and $\varepsilon_{jk}$ is a random error. Model (8.19) is a semiparametric extension of the linear seemingly unrelated regression model. For simplicity, it is assumed that the regression model for each dependent variable involves one nonparametric function only. The following discussions hold when the partial spline models in (8.19) are replaced by the semiparametric linear regression models (8.4).

There are two possible approaches to estimating the parameters $\beta = (\beta_1^T, \ldots, \beta_r^T)^T$ and the functions $f = (f_1, \ldots, f_r)$. The first approach is to fit the partial spline models in (8.19) separately, once for each dependent variable. The second approach is to fit all partial spline models...
in (8.19) simultaneously, which can be more efficient when the random errors are correlated (Wang, Guo and Brown 2000, Smith and Kohn 2000). We now discuss how to accomplish the second approach using the methods in this section.

Let \( m_1 = 0 \) and \( m_k = \sum_{l=1}^{k-1} n_l \) for \( k = 2, \ldots, r \). Let \( i = m_k + j \) for \( j = 1, \ldots, n_k \) and \( k = 1, \ldots, r \). Then there is an one-to-one correspondence between \( i \) and \((j,k)\). Define \( y_i = z_{jk} \) for \( j = 1, \ldots, n_k \) and \( k = 1, \ldots, r \). Then the partial spline models in (8.19) can be written jointly as

\[
y_i = s^T_{jk} \beta_k + L_{kj} f_k + \epsilon_{jk} = \sum_{l=1}^{r} \delta_{k,l} s^T_{jl} \beta_l + \sum_{l=1}^{r} \delta_{k,l} L_{lj} f_l + \epsilon_{jk} = \tilde{s}^T_i \beta + \sum_{l=1}^{r} \tilde{L}_{li} f_l + \epsilon_i, \tag{8.20}
\]

where \( \delta_{k,l} \) is the Kronecker delta, \( \tilde{s}^T_i = (\delta_{k,1} s^T_{j1}, \ldots, \delta_{k,r} s^T_{jr}) \), \( \tilde{L}_{li} = \delta_{k,l} L_{lj} \), and \( \epsilon_i = \epsilon_{jk} \). Assume that \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \sim N(0, \sigma^2 W^{-1}) \). It is easy to see that \( \tilde{L}_{li} \) are bounded linear functionals. Thus the model (8.20) for all dependent variables is a special case of the semiparametric linear regression model (8.4). Therefore, the estimation and inference methods described in Section 8.2.2 can be used. In particular, all parameters \( \beta \) and nonparametric functions \( f \) are estimated jointly based on the PWLS (8.5). In comparison, the first approach that fits model (8.19) separately for each dependent variable is equivalent to fitting model (8.20) based on the PLS.

As an interesting special case, consider the following SSR model for \( r = 2 \) dependent variables

\[
z_{jk} = f_k(x_{jk}) + \epsilon_{jk}, \quad k = 1, 2; \quad j = 1, \ldots, n_k, \tag{8.21}
\]

where the model space of \( f_k \) is an RKHS \( \mathcal{H}_k \) on \( \mathcal{X}_k \). Assume that \( \mathcal{H}_k = \mathcal{H}_{k0} \oplus \mathcal{H}_{k1} \), where \( \mathcal{H}_{k0} = \text{span} \{ \phi_{k1}, \ldots, \phi_{kp_k} \} \), and \( \mathcal{H}_{k1} \) is an RKHS with RK \( R_{k1} \). Then it is easy to check that

\[
\tilde{L}_{ki} \phi_{k\nu} = \begin{cases} L_{1i} \phi_{k\nu}, & 1 \leq i \leq n_1, \\ L_{2i} \phi_{k\nu}, & n_1 < i \leq n_1 + n_2, \end{cases}
\]

and

\[
\tilde{L}_{ki} \tilde{L}_{kj} R_{k1} = \begin{cases} L_{1i} L_{1j} R_{11}, & 1 \leq i,j \leq n_1, \\ L_{2i} L_{2j} R_{21}, & n_1 < i,j \leq n_1 + n_2. \end{cases}
\]

For illustration, we generate a data set from model (8.21) with \( \mathcal{X}_1 = [0, 1], \ n_1 = n_2 = 100, \ x_{i1} = x_{i2} = i/n, \ f_1(x) = \sin(2\pi x), \ f_2(x) = \ldots \)
\[
\sin(2\pi x) + 2x, \text{ and the paired random errors } (\varepsilon_{i1}, \varepsilon_{i2}) \text{ are iid bivariate normal random variables with mean zero and } \text{Var}(\varepsilon_{i1}) = 0.25, \text{ Var}(\varepsilon_{i2}) = 1, \text{ and Cor}(\varepsilon_{i1}, \varepsilon_{i2}) = 0.8.
\]

```r
n <- 100; s1 <- .5; s2 <- 1; r <- .8
A <- diag(c(s1,s2))%*%matrix(c(sqrt(1-r**2),0,r,1),2,2)
e <- NULL; for (i in 1:n) e <- c(e%*%rnorm(2))
x <- 1:n/n
y1 <- sin(2*pi*x) + e[seq(1,2*n,by=2)]
y2 <- sin(2*pi*x) + 2*x + e[seq(2,2*n,by=2)]
bisp.dat <- data.frame(y=c(y1,y2),x=rep(x,2), id=as.factor(rep(c(0,1),rep(n,2))), pair=rep(1:n,2))
```

We model both \( f_1 \) and \( f_2 \) using the cubic spline space \( W_2^2[0,1] \) under the construction in Section 2.6. We first fit each SSR model in (8.21) separately and compute posterior means and standard deviations:

```r
bisp.fit1 <- ssr(y~I(x-.5), rk=cubic(x), spar='m', data=bisp.dat[bisp.dat$id==0,])
bisp.p1 <- predict(bisp.fit1)
bisp.fit2 <- ssr(y~I(x-.5), rk=cubic(x), spar='m', data=bisp.dat[bisp.dat$id==1,])
bisp.p2 <- predict(bisp.fit2)
```

The functions of \( f_1 \) and \( f_2 \) and their estimates and confidence intervals based on separate fits are shown in the top panel of Figure 8.1.

Next we fit the SSR models in (8.21) jointly, compute posterior means and standard deviations, and compare the posterior standard deviations with those based on separate fits:

```r
bisp.fit3 <- ssr(y~id/I(x-.5)-1, rk=list(rk.prod(cubic(x),kron(id==0)), rk.prod(cubic(x),kron(id==1))), spar='m', weights=varIdent(form=~1|id), correlation=corSymm(form=~1|pair), data=bisp.dat)
summary(bisp.fit3)
```

```
Coefficients (d):
 id0 id1 id0:I(x - 0.5) id1:I(x - 0.5)
-0.002441981 1.059626687 -0.440873366 2.086878037
```

GML estimate(s) of smoothing parameter(s) :

\[8.358606e-06 \quad 5.381727e-06\]

Equivalent Degrees of Freedom (DF): 13.52413

Estimate of sigma: 0.483716
FIGURE 8.1  Plots of the true functions (dotted lines), cubic spline estimates (solid lines), and 95% Bayesian confidence intervals (shaded regions) of $f_1$ (left) and $f_2$ (right). Plots in the top panel are based on the separate fits and plots in the bottom panel are based on the joint fit.

Correlation structure of class corSymm representing
Correlation:
1
2 0.777
Variance function structure of class varIdent representing
0 1
1.000000 1.981937

> bisp.p31 <- predict(bisp.fit3,
  newdata=bisp.dat[bisp.dat$id==0,]
  terms=c(1,0,1,0,1,0))
> bisp.p32 <- predict(bisp.fit3,
An arbitrary pairwise variance–covariance structure was assumed, and the variance–covariance structure was specified with the combination of the weights and correlation options. On average, the posterior standard deviations based on the joint fit are smaller than those based on separate fits. Estimates and confidence intervals based on the joint fit are shown in the bottom panel of Figure 8.1.

In many applications, the domains of $f_1$ and $f_2$ are the same. That is, $X_1 = X_2 = X$. Then we can rewrite $f_j(x)$ as $f(j, x)$ and regard it as a bivariate function of $j$ and $x$ defined on the product domain $\{1, 2\} \times X$. The joint approach described above for fitting the SSR models in (8.21) is equivalent to representing the original functions as

$$f(j, x) = \delta_{j, 1} f_1(x) + \delta_{j, 2} f_2(x). \quad (8.22)$$

Sometimes the main interest is the difference between $f_1$ and $f_2$: $d(x) = f_2(x) - f_1(x)$. We may reparametrize $f(j, x)$ as

$$f(j, x) = f_1(x) + \delta_{j, 2} d(x) \quad (8.23)$$
or

$$f(j, x) = \frac{1}{2} \{f_1(x) + f_2(x)\} + \frac{1}{2} (\delta_{j, 2} - \delta_{j, 1}) d(x). \quad (8.24)$$

Models (8.23) and (8.24) correspond to the SS ANOVA decompositions of $f(j, t)$ with the set-to-zero and sum-to-zero side conditions, respectively. The following statements fit model (8.23) and compute posterior means and standard deviations of $d(x)$:

```r
> bisp.fit4 <- update(bisp.fit3,
y~I(x-.5)+I(id==1)+I((x-.5)*(id==1)),
rk=list(cubic(x),rk.prod(cubic(x),kron(id==1))))
> bisp.p41 <- predict(bisp.fit4,
 newdata=bisp.dat[bisp.dat$id==1,], terms=c(0,0,1,1,0,1))
```

where $d(x)$ is modeled using the cubic spline space $W_2^2[0, 1]$ under the construction in Section 2.6. The function of $d(x)$ and its estimate are shown in the left panel of Figure 8.2. Model (8.24) can be fitted similarly. Sometimes it is of interest to check if $f_1$ and $f_2$ are parallel rather than if $d(x) = 0$. Let $d_1(x)$ be the projection of $d(x)$ onto $W_2^2[0, 1] \cap \{1\}$. Then
$f_1$ and $f_2$ are parallel iff $d_1(x) = 0$. Similarly, the projection of $d(x)$ onto $W^2_2[0,1] \circ \{1\} \circ \{x-.5\}$, $d_2(x)$, can be used to check if $f_1$ and $f_2$ differ by a linear function. We compute posterior means and standard deviations of $d_1(x)$ and $d_2(x)$ as follows:

```r
> bisp.p42 <- predict(bisp.fit4,
 newdata=bisp.dat[bisp.dat$id==1,], terms=c(0,0,0,1,0,1))
> bisp.p43 <- predict(bisp.fit4,
 newdata=bisp.dat[bisp.dat$id==1,], terms=c(0,0,0,0,0,1))
```

The functions of $d_1(x)$ and $d_2(x)$, their estimates, and 95% Bayesian confidence intervals are shown in the middle and right panels of Figure 8.2. We can see that $f_1$ and $f_2$ are not parallel but differ by a linear function.

![Figure 8.2](image.png)

**FIGURE 8.2** Plots of the functions $d(x)$ (left), $d_1(x)$ (middle), and $d_2(x)$ (right) as dotted lines. Estimates of these functions are plotted as solid lines, and 95% Bayesian confidence intervals are marked as the shaded regions.

We now introduce a more sophisticated SS ANOVA decomposition that can be used to investigate various relationships between $f_1$ and $f_2$. Define two averaging operators $A^{(1)}_1$ and $A^{(2)}_1$ such that

$$A^{(1)}_1 f = w_1 f_1 (1,x) + w_2 f_2 (2,x),$$

$$A^{(2)}_1 f = \int_{\mathcal{X}} f(j,x) dP(x),$$

where $w_1 + w_2 = 1$, and $P$ is a probability measure on $\mathcal{X}$. Then we have
the following SS ANOVA decomposition

\[ f(j, x) = \mu + g_1(j) + g_2(x) + g_{12}(j, x), \quad (8.25) \]

where

\[
\begin{align*}
\mu &= A_1^{(1)} A_2^{(2)} f = \int_X \{w_1 f_1(x) + w_2 f_2(x)\} dP(x), \\
g_1(j) &= (I - A_1^{(1)}) A_2^{(2)} f = \int_X f_j(x) dP(x) - \mu, \\
g_2(x) &= A_1^{(1)} (I - A_2^{(2)}) f = w_1 f_1(x) + w_2 f_2(x) - \mu, \\
g_{12}(j, x) &= (I - A_1^{(1)})(I - A_2^{(2)}) f = f_j(x) - \mu - g_1(j) - g_2(x).
\end{align*}
\]

The constant \( \mu \) is the overall mean, the marginal functions \( g_1 \) and \( g_2 \) are the main effects, and the bivariate function \( g_{12} \) is the interaction.

The SS ANOVA decomposition (8.25) makes certain hypotheses more transparent. For example, it is easy to check that the following hypotheses are equivalent:

\[
\begin{align*}
H_0 : f_1(x) = f_2(x) &\quad \iff \quad H_0 : g_1(j) + g_{12}(j, x) = 0, \\
H_0 : f_1(x) - f_2(x) = \text{constant} &\quad \iff \quad H_0 : g_{12}(j, x) = 0, \\
H_0 : \int_X f_1(x) dP(x) = \int_X f_2(x) dP(x) &\quad \iff \quad H_0 : g_1(j) = 0, \\
H_0 : w_1 f_1(x) + w_2 f_2(x) = \text{constant} &\quad \iff \quad H_0 : g_2(x) = 0.
\end{align*}
\]

Furthermore, if \( g_1(j) \neq 0 \) and \( g_2(x) \neq 0, \)

\[
H_0 : a f_1(x) + b f_2(x) = c, \quad |a| + |b| > 0 \iff H_0 : g_{12}(j, t) = \beta g_1(j) g_2(x).
\]

Therefore, the hypothesis that \( f_1 \) and \( f_2 \) are equal is equivalent to \( g_1(j) + g_{12}(j, x) = 0 \). The hypothesis that \( f_1 \) and \( f_2 \) are parallel is equivalent to the hypothesis that the interaction \( g_{12} = 0 \). The hypothesis that the integrals of \( f_1 \) and \( f_2 \) with respect to the probability measure \( P \) are equal is equivalent to the hypothesis that the main effect \( g_1(j) = 0 \). The hypothesis that the weighted average of \( f_1 \) and \( f_2 \) is a constant is equivalent to the hypothesis that the main effect \( g_2(x) = 0 \). Note that the probability measure \( P \) and weights \( w_j \) are arbitrary, which can be selected for specific hypotheses. Under the specified conditions, the hypothesis that there exists a linear relationship between the functions \( f_1 \) and \( f_2 \) is equivalent to the hypothesis that the interaction is multiplicative. Thus, for these hypotheses, we can fit the SS ANOVA model (8.25) and perform tests on the corresponding components.
8.3 Semiparametric Nonlinear Regression Models

8.3.1 The Model

A semiparametric nonlinear regression (SNR) model assumes that

\[ y_i = N_i(\beta, f) + \epsilon_i, \quad i = 1, \ldots, n, \quad (8.26) \]

where \( \beta = (\beta_1, \ldots, \beta_q)^T \in \mathbb{R}^q \) is a vector of parameters, \( f = (f_1, \ldots, f_r) \) are unknown functions, \( f_k \) belongs to an RKHS \( H_k \) on an arbitrary domain \( \mathcal{X}_k \) for \( k = 1, \ldots, r \), \( N_i \) are known nonlinear functionals on \( \mathbb{R}^q \times H_1 \times \cdots \times H_r \), and \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \sim N(0, \sigma^2 W^{-1}) \).

It is obvious that the SNR model (8.26) is an extension of the NNR model (7.4) to allow parameters in the model. The mean function may depend on both parameters \( \beta \) and nonparametric functions \( f \) nonlinearly. The nonparametric functions \( f \) are regarded as parameters just like \( \beta \). Certain constraints may be required to make an SNR model identifiable. Specific conditions depend on the form of a model and the purpose of an analysis. Often, identifiability can be achieved by adding constraints on parameters, absorbing some parameters into \( f \) and/or adding constraints on \( f \) by removing certain components from the model spaces. Illustrations of how to make an SNR model identifiable can be found in Section 8.4.

The semiparametric linear regression model (8.4) is a special case of SNR model when \( N_i \) are linear in \( \beta \) and \( f \). When \( N_i \) are linear in \( f \) for fixed \( \beta \), model (8.26) can be expressed as

\[ y_i = \alpha(\beta; x_i) + \sum_{k=1}^{r} L_{k_i}(\beta) f_k + \epsilon_i, \quad i = 1, \ldots, n, \quad (8.27) \]

where \( \alpha \) is a known linear or nonlinear function of independent variables \( x = (x_1, \ldots, x_d) \), \( x_i = (x_{i1}, \ldots, x_{id}) \), and \( L_{k_i}(\beta) \) are bounded linear functionals that may depend on \( \beta \). Model (8.27) will be referred to as a semiparametric conditional linear model.

One special case of model (8.27) is

\[ y_i = \alpha(\beta; x_i) + \sum_{k=1}^{r} \delta_k(\beta; x_i) f_k(\gamma_k(\beta; x_i)) + \epsilon_i, \quad i = 1, \ldots, n, \quad (8.28) \]

where \( \alpha, \delta_k, \) and \( \gamma_k \) are known functions. Containing many existing models as special cases, model (8.28) is interesting in its own right. It is obvious that both nonlinear regression and nonparametric regression
models are special cases of model (8.28). The project pursuit regression model (8.1) is a special case with \( \alpha(\beta; x) = \beta_0, \delta_k(\beta; x) \equiv 1 \) and \( \gamma_k(\beta; x) = \beta_1^T x, \) where \( \beta = (\beta_0, \beta_1^T, \ldots, \beta_r^T)^T. \) Partially linear single index model (8.2) is a special case with \( r = 1, \) \( x = (s^T, t^T)^T, \) \( \alpha(\beta; x) = \beta_1^T s, \delta_1(\beta; x) \equiv 1, \) \( \gamma_1(\beta; x) = \beta_1^T t, \) and \( \beta = (\beta_1^T, \beta_2^T)^T. \) Other special cases can be found in Section 8.4.

Sometimes one may want to investigate how parameters \( \beta \) depend on other covariates. One approach is to build a second-stage linear model, \( \beta = A \vartheta, \) where \( A \) is a known matrix. See Section 7.5 in Pinheiro and Bates (2000) for details. The general form of models (8.26), (8.27), and (8.28) remains the same when the second-stage model is plugged in. Therefore, the estimation procedures in Section 8.3.3 also apply to the SNR model combined with a second-stage model with \( \vartheta \) as parameters.

Let \( y = (y_1, \ldots, y_n)^T, \eta(\beta, f) = (N_1(\beta, f), \ldots, N_n(\beta, f))^T, \) and \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T. \) Then model (8.26) can be written in a vector form as

\[
y = \eta(\beta, f) + \epsilon. \tag{8.29}
\]

### 8.3.2 SNR Models for Clustered Data

Clustered data such as repeated measures, longitudinal, and multilevel data are common in practice. The SNR model for clustered data assumes that

\[
y_{ij} = N_{ij}(\beta_i, f_i) + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i, \tag{8.30}
\]

where \( y_{ij} \) is the \( j \)th observation in cluster \( i, \) \( \beta_i = (\beta_{i1}, \ldots, \beta_{iq})^T \in \mathbb{R}^q \) is a vector of parameters for cluster \( i, \) \( f_i = (f_{i1}, \ldots, f_{ir}) \) are unknown functions, \( f_k \) belongs to an RKHS \( \mathcal{H}_k \) on an arbitrary domain \( \mathcal{X}_k \) for \( k = 1, \ldots, r, \) \( N_{ij} \) are known nonlinear functionals on \( \mathbb{R}^q \times \mathcal{H}_1 \times \cdots \times \mathcal{H}_r, \) and \( \epsilon_{ij} \) are random errors. Let \( \epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{in_i})^T \) and \( \epsilon = (\epsilon_1^T, \ldots, \epsilon_n^T)^T. \)

We assume that \( \epsilon \sim N(0, \sigma^2 W^{-1}). \) Usually, observations are correlated within a cluster and independent between clusters. In this case, \( W^{-1} \) is block diagonal.

Again, when \( N_{ij} \) are linear in \( f \) for fixed \( \beta_i, \) model (8.30) can be expressed as

\[
y_{ij} = \alpha(\beta_i; x_{ij}) + \sum_{k=1}^r L_{kij}(\beta_i) f_k + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i, \tag{8.31}
\]

where \( \alpha \) is a known function of independent variables \( x = (x_1, \ldots, x_d), \) \( x_{ij} = (x_{ij1}, \ldots, x_{ijd}), \) and \( L_{kij}(\beta) \) are bounded linear functionals that may depend on \( \beta. \) Model (8.31) will be referred to as a semiparametric conditional linear model for clustered data.
Similar to model (8.28), one special case of model (8.31) is
\[
y_{ij} = \alpha(\beta; x_{ij}) + \sum_{k=1}^{r} \delta_k(\beta; x_{ij}) f_k(\gamma_k(\beta; x_{ij})) + \epsilon_{ij},
\]
where \(\alpha, \delta_k, \) and \(\gamma_k\) are known functions. Model (8.32) can be regarded as an extension of the self-modeling nonlinear regression (SEMOR) model proposed by Lawton, Sylvestre and Maggio (1972). In particular, the shape invariant model (SIM) (Lawton et al. 1972, Wang and Brown 1996),
\[
y_{ij} = \beta_{i1} + \beta_{i2} f \left( \frac{x_{ij} - \beta_{i3}}{\beta_{i4}} \right) + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i,
\]
is a special case of model (8.32) with \(d = 1, r = 1, q = 4, \alpha(\beta; x_{ij}) = \beta_{i1}, \delta_1(\beta; x_{ij}) = \beta_{i2}, \) and \(\gamma_k(\beta; x_{ij}) = (x_{ij} - \beta_{i3})/\beta_{i4}. \) Again, a second-stage linear model may also be constructed for parameters \(\beta_i, \) and the estimation procedures in Section 8.3.3 apply to the combined model.

Let \(n = \sum_{i=1}^{m} n_i, \) \(y = (y_{11}, \ldots, y_{in_i})^T, \) \(x = (y_{11}^T, \ldots, y_{in_i}^T)^T, \) \(\beta = (\beta_{11}, \ldots, \beta_{1n_i})^T, \) \(\eta(\beta; f) = (N_{11}(\beta_1, f), \ldots, N_{in_i}(\beta_i, f))^T, \) and \(\eta(\beta; f) = (\eta_{11}(\beta_1, f), \ldots, \eta_{in_i}(\beta_i, f))^T. \) Then model (8.30) can be written in the vector form (8.29).

### 8.3.3 Estimation and Inference

For simplicity we present the estimation and inference procedures for SNR models in Section 8.3.1 only. The same methods apply to SNR models in Section 8.3.2 for clustered data with a slight modification of notation.

Consider the vector form (8.29) and assume that \(W\) depends on an unknown vector of parameters \(\tau. \) Assume that \(f_k \in H_k, \) and \(H_k = H_{k0} \oplus H_{k1}, \) where \(H_{k0} = \text{span} \{ \phi_{k1}, \ldots, \phi_{kp_k} \} \) and \(H_{k1} \) is an RKHS with RK \(R_{k1}. \) Our goal is to estimate parameters \(\beta, \tau, \sigma^2,\) and nonparametric functions \(f. \)

Let
\[
l(y; \beta, f, \tau, \sigma^2) = \log |\sigma^2 W^{-1}| + \frac{1}{\sigma^2} (y - \eta)^T W (y - \eta)
\]
be twice the negative log-likelihood where an additive constant is ignored for simplicity. We estimate \(\beta, \tau,\) and \(f\) as minimizers of the penalized likelihood (PL)
\[
l(y; \beta, f, \tau, \sigma^2) + \frac{n\lambda}{\sigma^2} \sum_{k=1}^{r} \theta_k^{-1} ||P_{k1} f_k ||^2,
\]
Semiparametric Regression

where $P_{k1}$ is the projection operator onto $H_{k1}$ in $H_k$, and $\lambda \theta_k^{-1}$ are smoothing parameters. The multiplying constant $n/\sigma^2$ is introduced in the penalty term such that, ignoring an additive constant, the PL (8.35) has the same form as the PWLS (8.5) when $N$ is linear in both $\beta$ and $f$.

We will first develop a backfitting procedure for the semiparametric conditional linear model (8.27) and then develop an algorithm for the general SNR model (8.26).

Consider the semiparametric conditional linear model (8.27). We first consider the estimation of $f$ with fixed $\beta$ and $\tau$. When $\beta$ and $\tau$ are fixed, the PL (8.35) is equivalent to the PWLS (8.5). Therefore, the solutions of $f$ to (8.35) can be represented as those in (8.6). We will use the same notations as in Section 8.2.2. Note that both $T$ and $\Sigma \theta$ may depend on $\beta$ even though the dependence is not expressed explicitly for simplicity. Let $\alpha = (\alpha(\beta; x_1), \ldots, \alpha(\beta; x_n))^T$. We need to solve equations

$$(\Sigma \theta + n \lambda W^{-1}) c + T d = y - \alpha,$$

$$T^T c = 0,$$

(8.36)

for coefficients $c$ and $d$. Note that $\alpha$ and $W$ are fixed since $\beta$ and $\tau$ are fixed, and the equations in (8.36) have the same form as those in (5.6). Therefore, methods in Section 5.2.1 can be used to solve (8.36), and the UBR, GCV, and GML methods in Section 5.2.3 can be used to estimate smoothing parameters $\lambda$ and $\theta$.

Next we consider the estimation of $\beta$ and $\tau$ with fixed $f$. When $f$ is fixed, the PL (8.35) is equivalent to

$$\log |\sigma^2 W^{-1}| + \frac{1}{\sigma^2} \{y - \eta(\beta, f)\}^T W \{y - \eta(\beta, f)\}.$$  (8.37)

We use the backfitting and Gauss–Newton algorithms in Pinheiro and Bates (2000) to find minimizers of (8.37) by updating $\beta$ and $\tau$ iteratively. Details about the backfitting and Gauss–Newton algorithms can be found in Section 7.5 of Pinheiro and Bates (2000).

Putting pieces together, we have the following algorithm.

Algorithm for semiparametric conditional linear models

1. Initialize: Set initial values for $\beta$ and $\tau$.

2. Cycle: Alternate between (a) and (b) until convergence:

   (a) Conditional on current estimates of $\beta$ and $\tau$, update $f$ using methods in Section 5.2.1 with smoothing parameters selected by the UBR, GCV, or GML method in Section 5.2.3.
(b) Conditional on current estimates of \( f \), update \( \beta \) and \( \tau \) by solving (8.37) alternatively using the backfitting and Gauss–Newton algorithms.

Note that smoothing parameters are estimated iteratively with fixed \( \tau \) at step 2(a). The parameters \( \tau \) are estimated at step 2(b), which makes the algorithm relatively easy to implement. An alternative computationally more expensive approach is to estimate smoothing parameters and \( \tau \) jointly at step (a).

Finally, we consider the estimation for the general SNR model (8.26). When \( \eta \) is nonlinear in \( f \), the solutions of \( f \) to (8.35) usually do not fall in finite dimensional spaces. Therefore, certain approximations are necessary. Again, first consider estimating \( f \) with fixed \( \beta \) and \( \tau \). We now extend the EGN procedure in Section 7.3 to multiple functions. Let \( f_- \) be the current estimate of \( f \). For any fixed \( \beta \), \( \mathcal{N}_i \) is a functional on \( \mathcal{H}_1 \times \cdots \times \mathcal{H}_r \). We assume that \( \mathcal{N}_i \) is Fréchet differentiable at \( f_- \) and write \( D_i = D \mathcal{N}_i(f_-) \). Then \( D_i \mathbf{h} = \sum_{k=1}^r D_{ki} h_k \), where \( D_{ki} \) is the partial Fréchet differential of \( \mathcal{N}_i \) with respect to \( f_k \) evaluated at \( f_- \), \( \mathbf{h} = (h_1, \ldots, h_r) \) and \( h_k \in \mathcal{H}_k \) (Flett 1980). For \( k = 1, \ldots, r \), \( \mathcal{L}_{ki} \) is a bounded linear functional on \( \mathcal{H}_k \). Approximating \( \mathcal{N}_i(\beta, f) \) by its linear approximation

\[
\mathcal{N}_i(\beta, f) \approx \mathcal{N}_i(\beta, f_-) + \sum_{k=1}^r D_{ki} (f_k - f_k^-),
\]

we have an approximate semiparametric conditional linear model

\[
\tilde{y}_i = \sum_{k=1}^r D_{ki} f_k + \epsilon_i, \quad i = 1, \ldots, n,
\]

where \( \tilde{y}_i = y_i - \mathcal{N}_i(\beta, f_-) + \sum_{k=1}^r D_{ki} f_k^- \). Functions \( f \) in model (8.39) can be estimated using the method in Section 8.2.2. Consequently, we have the following algorithm for the general SNR model.

**Algorithm for general SNR model**

1. **Initialize:** Set initial values for \( \beta \), \( \tau \), and \( f \).

2. **Cycle:** Alternate between (a) and (b) until convergence:

   (a) Conditional on current estimates of \( \beta \), \( \tau \), and \( f \), compute \( D_{ki} \) and \( \tilde{y}_i \), and update \( f \) by applying step 2(a) in the Algorithm for semiparametric conditional linear models to the approximate model (8.39). Repeat this step until convergence.
Conditional on current estimates of $f$, update $\beta$ and $\tau$ by solving (8.37) alternatively using the backfitting and Gauss–Newton algorithms.

Denote the final estimates of $\beta$, $\tau$, and $f$ as $\hat{\beta}$, $\hat{\tau}$, and $\hat{f}$. We estimate $\sigma^2$ by

$$\hat{\sigma}^2 = \frac{(y - \hat{\eta})^T \hat{W} (y - \hat{\eta})}{n - d - \text{tr}(\hat{H}^*)},$$

(8.40)

where $\hat{\eta} = \eta(\hat{\beta}, \hat{f})$, $\hat{W}$ is the estimate of $W$ with $\tau$ being replaced by $\hat{\tau}$, $d$ is the degrees of freedom for parameters, which is usually taken as the total number of parameters, and $\hat{H}^*$ is the hat matrix for model (8.39) computed at convergence.

Conditional on $f$, inference for $\beta$ and $\tau$ can be made based on the approximate distributions of the maximum likelihood estimates. Conditional on $\beta$ and $\tau$, model (8.27) is a special case of the semiparametric linear regression model (8.4). Therefore, Bayesian confidence intervals can be constructed as in Section 8.2 for semiparametric conditional linear models. For the general SNR model, approximate Bayesian confidence intervals can be constructed based on the linear approximation (8.39) at convergence. The bootstrap approach may also be used to construct confidence intervals.

### 8.3.4 The snr Function

The function `snr` in the **assist** package is designed to fit the following special SNR models

$$y_i = \psi(\beta, L_{1i}(\beta)f_1, \ldots, L_{ri}(\beta)f_r) + \epsilon_i, \quad i = 1, \ldots, n,$$

(8.41)

for cross-sectional data and

$$y_{ij} = \psi(\beta_i, L_{1ij}(\beta_i)f_1, \ldots, L_{rij}(\beta_i)f_r) + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i,$$

(8.42)

for clustered data, where $\psi$ is a known nonlinear function, and $L_{ki}(\beta)$ and $L_{kij}(\beta_i)$ are evaluational functionals on $H_k$. Obviously, (8.41) includes the model (8.28) as a special case, and (8.42) includes the model (8.32) as a special case.

A modified procedure is implemented in the `snr` function. Note that models (8.41) and (8.42) reduce to the NNR model (7.5) when $\beta$ is fixed and random errors are iid. For non-iid random errors, when both $\beta$ and $\tau$ are fixed, similar transformations as in Section 5.2.1 may be
used. The nonlinear Gauss–Seidel algorithm in Section 7.4 can then be used to update nonparametric functions $f$. Therefore, we implement the following procedure in the `snr` function.

**Algorithm in the `snr` function**

1. **Initialize**: Set initial values for $\beta$, $\tau$, and $f$.

2. **Cycle**: Alternate between (a) and (b) until convergence:

   (a) Conditional on current estimates of $\beta$, $\tau$ and $f$, apply transformations as in Section 5.2.1 when random errors are non-iid, and use the nonlinear Gauss–Seidel algorithm to update $f$.

   (b) Conditional on current estimates of $f$, update $\beta$ and $\tau$ by solving (8.37) alternatively using the backfitting and Gauss–Newton algorithms.

No initial values for $f_k$ are necessary if $\psi$ depends on $f_k$ linearly in (8.41) or (8.42). The initial $\tau$ is set such that $W$ equals the identity matrix. Step (b) is implemented using the `gnls` function in the `nlme` package.

A typical call is

```
snr(formula, func, params, start)
```

where `formula` is a two-sided formula specifying the response variable on the left side of a `~` operator and an expression for the function $\psi$ in the model (8.41) or (8.42) on the right side with $\beta$ and $f_k$ treated as parameters. The argument `func` inputs a list of formulae, each specifying bases $\phi_{k1}, \ldots, \phi_{kp_k}$ for $H_{k0}$ and RK $R_{k1}$ for $H_{k1}$ in the same way as the `func` argument in the `nnr` function. The argument `params` inputs a list of two-sided linear formulae specifying second-stage models for $\beta$. When there is no second-stage model for a parameter, it is specified as `~1`. The argument `start` inputs initial values for all parameters. When $\psi$ depends on functions $f_k$ nonlinearly, initial values for those functions should also be provided in the `start` argument.

An object of `snr` class is returned. The generic function `summary` can be applied to extract further information. Predictions at covariate values can be computed using the `predict` function. Posterior means and standard deviations for $f$ can be computed using the `intervals` function. See Sections 8.4.2–8.4.6 for examples.
8.4 Examples

8.4.1 Canadian Weather — Revisit

Consider the Canadian weather data again with annual temperature and precipitation profiles from all 35 stations as functional data. We now investigate how the monthly logarithm of rainfall depends on climate regions and temperature. Let $y$ be the logarithm of $\text{prec}$, $x_1$ be the region indicator, and $x_2$ be the month variable scaled into $[0, 1]$. Consider the following FLM

$$y_{k,x_1}(x_2) = f_1(x_1, x_2) + w_{k,x_1}(x_2)f_2(x_2) + \epsilon_{k,x_1}(x_2), \tag{8.43}$$

where $y_{k,x_1}(x_2)$, $w_{k,x_1}(x_2)$, and $\epsilon_{k,x_1}(x_2)$ are profiles of log precipitation, residual temperature after removing the region effect, and random error of station $k$ in climate region $x_1$, respectively. Both annual log precipitation and temperature profiles can be regarded as functional data. Therefore, model (8.43) is an example of situation (iii) in Section 2.10 where both the independent and dependent variables involve functional data. We model the bivariate function $f_1(x_1, x_2)$ using the tensor product space $\mathbb{R}^4 \otimes W^2_2(\text{per})$. Then, as in (4.22), $f_1$ admits the SS ANOVA decomposition

$$f_1(x_1, x_2) = \mu + f_{1,1}(x_1) + f_{1,2}(x_2) + f_{1,12}(x_1, x_2).$$

Model (8.43) is the same as model (14.1) in Ramsay and Silverman (2005) with $\mu(x_2) = \mu + f_{1,2}(x_2)$, $\alpha_{x_1}(x_2) = f_{1,1}(x_1) + f_{1,12}(x_1, x_2)$, and $\beta(x_2) = f_2(x_2)$. The function $f_2$ is the varying coefficient function for the temperature effect. We model $f_2$ using the periodic spline space $W^2_2(\text{per})$. There are 12 monthly observations for each station. Collect all observations on $y$, $x_1$, $x_2$, and $w$ for all 35 stations and denote them as $\{(y_i, x_{1i}, x_{2i}, w_i), \ i = 1, \ldots, n\}$ where $n = 420$. Denote the collection of random errors as $\epsilon_1, \ldots, \epsilon_n$. Then model (8.43) can be rewritten as

$$y_i = \mu + f_{1,1}(x_{1i}) + f_{1,2}(x_{2i}) + f_{1,12}(x_{1i}, x_{2i}) + \mathcal{L}_{2i}f_2 + \epsilon_i, \tag{8.44}$$

where $\mathcal{L}_{2i}f_2 = w_if_2(x_{2i})$. Model (8.44) is a special case of the semiparametric linear regression model (8.4). Model spaces for $f_{1,1}$, $f_{1,2}$, and $f_{1,12}$ are $\mathcal{H}_1 = \mathcal{H}_1^1$, $\mathcal{H}_2 = \mathcal{H}_2^2$, and $\mathcal{H}_3 = \mathcal{H}_3^3$, where $\mathcal{H}_1^1$, $\mathcal{H}_2^2$, and $\mathcal{H}_3^3$ are defined in Section 4.4.4. The RKs $R_1$, $R_2$, and $R_3$ of $\mathcal{H}_1$, $\mathcal{H}_2$, and $\mathcal{H}_3$ can be calculated as products of the RKs of the involved marginal spaces. Define $\Sigma_1 = \{R_{1}(x_{1i}, x_{j1})\}_{i,j=1}^{n}$, $\Sigma_2 = \{R_{2}(x_{1i}, x_{2j})\}_{i,j=1}^{n}$, and $\Sigma_3 = \{R_{3}((x_{1i}, x_{2i}), (x_{j1}, x_{j2}))\}_{i,j=1}^{n}$. For $f_2$, the model space $\mathcal{H}_4 =$
$W_2^2(\text{per})$ where the construction of $W_2^2(\text{per})$ is given in Section 2.7. Specifically, write $W_2^2(\text{per}) = \mathcal{H}_{40} \oplus \mathcal{H}_{41}$, where $\mathcal{H}_{40} = \{1\}$ and $\mathcal{H}_{41} = W_2^2(\text{per}) \ominus \{1\}$. Denote $\phi_4(x_2) = 1$ as the basis of $\mathcal{H}_{40}$ and $R_4$ as the RK for $\mathcal{H}_{41}$. Then, $T_4 = (L_{21}\phi_4, \ldots, L_{2n}\phi_4)^T = (w_1, \ldots, w_n)^T \triangleq w$, and $\Sigma_4 = \{L_{2i}L_{j2}R_4\}_{i,j=1}^n = \{w_iw_jR_4(x_{i2}, x_{j2})\}_{i,j=1}^n = wu^T \circ \Lambda$ where $\Lambda = \{R_4(x_{i2}, x_{j2})\}_{i,j=1}^n$ and $\circ$ represents elementwise multiplication of two matrices. Therefore, model (8.44) can be fitted as follows:

> x1 <- rep(as.factor(region),rep(12,35))
> x2 <- (rep(1:12,35)-.5)/12
> y <- log(as.vector(monthlyPrecip))
> w <- canada.fit2$resi
> canada.fit3 <- ssr(y~w, rk=list(shrink1(x1), periodic(x2), rk.prod(shrink1(x1),periodic(x2)), rk.prod(kron(w),periodic(x2))))

Estimates of region effects $\alpha_x(x_2)$ and coefficient function $f_2$ evaluated at grid points are computed as follows:

> xgrid <- seq(0,1,len=50)
> zone <- c('Atlantic','Pacific','Continental','Arctic')
> grid <- data.frame(x1=rep(zone,rep(50,4)), x2=xgrid, w=rep(0,200))
> alpha <- predict(canada.fit3, newdata=grid, terms=c(0,0,1,0,1,0))
> grid <- data.frame(x1=rep(zone[1],50), x2=xgrid, w=rep(1,50))
> f2 <- predict(canada.fit3, newdata=grid, terms=c(0,0,0,0,0,1))

Those estimates of $\alpha_x(x_2)$ and $f_2$ are shown in Figures 8.3 and 8.4, respectively.

Ramsay and Silverman (2005) also considered the following FLM (model (16.1) in Ramsay and Silverman (2005)):

$$y_k(x_2) = f_1(x_2) + \int_0^1 w_k(u)f_2(u, x_2)du + \epsilon_k(x_2),$$

$$k = 1, \ldots, 35,$$

(8.45)

where $y_k(x_2)$ is the logarithm of annual precipitation profile at station $k$, $f_1(x_2)$ plays the part of an intercept as in the standard regression, $w_k(u)$ is the temperature profile at station $k$, $f_2(u, x_2)$ is an unknown
FIGURE 8.3 Canadian weather data, plots of estimated region effects to precipitation, and 95% Bayesian confidence intervals.

FIGURE 8.4 Canadian weather data, estimate of the coefficient function for temperature effect $f_2$, and 95% Bayesian confidence intervals.
weight function at month $x_2$, and $\epsilon_k(x_2)$ are random error processes. Comparing to model (8.44), the whole temperature profile is used to predict the current precipitation in (8.45). Note that $w_k(x_2)$ in model (8.45) is the actual temperature, and $w_k(x_2)$ in (8.44) is the residual temperature after the removing the region effect.

The goal is to model and estimate functions $f_1$ and $f_2$. It is reasonable to assume that $f_1$ and $f_2$ are smooth periodic functions. Specifically, we assume that $f_1 \in W^2_2(\text{per})$, and $f_2 \in W^2_2(\text{per}) \otimes W^2_2(\text{per})$. Let $\mathcal{H}_0 = \{1\}$ and $\mathcal{H}_1 = W^2_2(\text{per}) \circ \{1\}$. Then, we have an one-way SS ANOVA decomposition for $W^2_2(\text{per})$,

$$W^2_2(\text{per}) = \mathcal{H}_0 \oplus \mathcal{H}_1,$$

and a two-way SS ANOVA decomposition for $W^2_2(\text{per}) \otimes W^2_2(\text{per})$,

$$W^2_2(\text{per}) \otimes W^2_2(\text{per}) = \left\{ \mathcal{H}^{(1)}_0 \oplus \mathcal{H}^{(1)}_1 \right\} \otimes \left\{ \mathcal{H}^{(2)}_0 \oplus \mathcal{H}^{(2)}_1 \right\}$$

$$= \mathcal{H}^{(1)}_0 \otimes \mathcal{H}^{(2)}_0 \oplus \mathcal{H}^{(1)}_1 \otimes \mathcal{H}^{(2)}_0 \oplus \mathcal{H}^{(1)}_0 \otimes \mathcal{H}^{(2)}_1 \oplus \mathcal{H}^{(1)}_1 \otimes \mathcal{H}^{(2)}_1 \oplus \mathcal{H}^{(1)}_0 \oplus \mathcal{H}^{(2)}_1 \oplus \mathcal{H}^{(1)}_1 \oplus \mathcal{H}^{(2)}_2 \oplus \mathcal{H}^{(1)}_2 \oplus \mathcal{H}^{(2)}_3 \oplus \mathcal{H}^{(1)}_3 \oplus \mathcal{H}^{(2)}_4,$$

where $\mathcal{H}^{(1)}_0 = \mathcal{H}^{(2)}_0 = \{1\}$, and $\mathcal{H}^{(1)}_1 = \mathcal{H}^{(2)}_1 = W^2_2(\text{per}) \circ \{1\}$. Equivalently, we have the following SS ANOVA decomposition for $f_1$ and $f_2$:

$$f_1(x_2) = \mu_1 + f_{1,1}(x_2),$$

$$f_2(u, x_2) = \mu_2 + f_{2,1}(u) + f_{2,2}(x_2) + f_{2,12}(u, x_2),$$

where $f_{1,1} \in \mathcal{H}_1$, $f_{2,1} \in \mathcal{H}_2$, $f_{2,2} \in \mathcal{H}_3$, and $f_{2,12} \in \mathcal{H}_4$. Then model (8.45) can be rewritten as

$$y_k(x_2) = \mu_1 + \mu_2 z_k + f_{1,1}(x_2) + \int_0^1 w_k(u) f_{2,1}(u) du + z_k f_{2,2}(x_2)$$

$$+ \int_0^1 w_k(u) f_{2,12}(u, x_2) du + \epsilon_k(x_2),$$

where $z_k = \int_0^1 w_k(u) du$. Let $z = (z_1, \ldots, z_{35})^T$ and $s = (s_1, \ldots, s_n) \triangleq z \otimes 1_{12}$, where $1_k$ is a $k$-vector of all ones and $\otimes$ represents the Kronecker product. Denote $\{(y_i, x_{2i}), \ i = 1, \ldots, n\}$ as the collection of all observations on $y$ and $x_2$, and $e_1, \ldots, e_n$ as the collection of random errors. Then model (8.47) can be rewritten as

$$y_i = \mu_1 + \mu_2 s_i + f_{1,1}(x_{2i}) + \int_0^1 w_i[u] f_{2,1}(u) du + s_i f_{2,2}(x_{2i})$$

$$+ \int_0^1 w_i[u] f_{2,12}(u, x_{2i}) du + \epsilon_i, \quad i = 1, \ldots, n,$$
where \([i]\) represents the integer part of \((11 + i)/12\). Define a linear operator \(L_i\) as the evaluational functional on \(H_i = W^2_i(\text{per}) \ominus \{1\}\) such that \(L_{i}f_{1,1} = f_{1,1}(x_{i2})\). Define linear operators \(L_{2i}\), \(L_{3i}\), and \(L_{4i}\) on subspaces \(H_2\), \(H_3\), and \(H_4\) in (8.46) such that

\[
\begin{align*}
L_{2i}f_{2,1} &= \int_{0}^{1} w_i(u)f_{2,1}(u)du,
L_{3i}f_{2,2} &= s_i f_{2,2}(x_{i2}),
L_{4i}f_{2,12} &= \int_{0}^{1} w_i(u)f_{2,12}(u, x_{i2})du.
\end{align*}
\]

Assume that functions \(w_k(u)\) for \(k = 1, \ldots, 35\) are square integrable. Then \(L_{2i}\), \(L_{3i}\), and \(L_{4i}\) are bounded linear functionals, and model (8.48) is a special case of the semiparametric linear regression model (8.4).

Let \(t_i = (i - 0.5)/12\) for \(i = 1, \ldots, 12\) be the middle point of month \(i\), \(x_2 = (t_1, \ldots, t_{12})^T\), \(w_k = (w_k(x_{i2}), \ldots, w_k(x_{m2}))^T\), where \(m = 12\), and \(W = (w_1, \ldots, w_{35})\). Let \(R_1\) be the RK of \(H_1 = W^2_2(\text{per}) \ominus \{1\}\). Introduce the notation \(R_1(u, v) = \{R_1(u_k, v_l)\}_{k=1}^{K} \cup_{l=1}^{L}\) for any vectors \(u = (u_1, \ldots, u_K)^T\) and \(v = (v_1, \ldots, v_L)^T\). It is easy to check that \(S = (1, s)\), \(\Sigma_1 = 1_{35} \otimes 1_{12} \ominus R_1(x_2, x_2)\), and \(\Sigma_3 = z \otimes z^T \ominus R_1(x_2, x_2)\). A similar approximation as in Section 2.10 leads to \(\Sigma_2 \approx \{W^T R_1(x_2, x_2)W\} \otimes 1_{12} \otimes 1_{12}/144\). Note that the RK of \(H_4\) in (8.46) equals \(R_1(s, t) R_1(x, z)\). Then the \((i, j)\)th element of the matrix \(\Sigma_4\)

\[
\Sigma_4(i, j) = L_{4i} L_{4j} R_1(u, v) R_1(x, z)
= R_1(x_{i2}, x_{j2}) \int_{0}^{1} \int_{0}^{1} w_i(u) w_j(v) R_1(u, v) du dv
\approx \frac{1}{144} R_1(x_{i2}, x_{j2}) w_i^T R_1(x_2, x_2) w_j.
\]

Thus, \(\Sigma_4 \approx \Sigma_1 \circ \Sigma_2\). We fit model (8.48) as follows:

```r
> W <- monthlyTemp; z <- apply(W, 2, mean)
> s <- rep(z, rep(12, 35)); x <- seq(0.5, 11.5, 1)/12
> y <- log(as.vector(monthlyPrecip))
> Q1 <- kronecker(matrix(1, 35, 35), periodic(x))
> Q2 <- kronecker(t(W) %*% periodic(x) %*% W,
matrix(1, 12, 12))/144
> Q3 <- kronecker(z %*% t(z), periodic(x))
> Q4 <- rk.prod(Q1, Q2)
> canada.fit4 <- ssr(y ~ s, rk = list(Q1, Q2, Q3, Q4))
```
We now show how to compute the estimated functions evaluated at a set of points. From (8.6), the estimated functions are represented by

\[ \hat{f}_1(x_2) = d_1 + \theta_1 \sum_{i=1}^{n} c_i R_1(x_2, x_{i2}), \]

\[ \hat{f}_{2,1}(u) = \theta_2 \sum_{i=1}^{n} c_i \int_0^1 w_{i|[}^i(v) R_1(u, v) dv, \]

\[ \hat{f}_{2,2}(x_2) = \theta_3 \sum_{i=1}^{n} c_i \left( \int_0^1 w_{i|[}^i(u) du \right) R_1(x_2, x_{i2}), \]

\[ \hat{f}_{2,12}(u, x_2) = \theta_4 \sum_{i=1}^{n} c_i \left( \int_0^1 w_{i|[}^i(v) R_1(u, v) dv \right) R_1(x_2, x_{i2}). \]

Let \( u_0 \) and \( x_0 \) be a set of points in \([0, 1]\) for the variables \( u \) and \( x_2 \), respectively. For simplicity, assume that both \( u_0 \) and \( x_0 \) have length \( n_0 \). The following calculations can be extended to the case when \( u_0 \) and \( x_0 \) have different lengths. It is not difficult to check that

\[ \hat{f}_1(x_0) = d_1 1_{n_0} + \theta_1 \sum_{i=1}^{n} c_i R_1(x_0, x_{i2}) = d_1 1_{n_0} + \theta_1 S_1 c, \]

\[ \hat{f}_{2,1}(u_0) = \theta_2 \sum_{i=1}^{n} c_i \int_0^1 w_{i|[}^i(u) R_1(u_0, u) du \]

\[ \approx \frac{1}{12} \theta_2 \sum_{i=1}^{n} c_i \sum_{j=1}^{12} R_1(u_0, x_{j2}) w_{i|[}^i(x_{j2}) \]

\[ = \frac{1}{12} \theta_2 \sum_{i=1}^{n} c_i R_1(u_0, x_{i2}) w_{i|[} \]

\[ = \theta_2 S_2 c, \]

\[ \hat{f}_{2,2}(x_0) = \theta_3 \sum_{i=1}^{n} c_i \left( \int_0^1 w_{i|[}^i(u) du \right) R_1(x_0, x_{i2}) = \theta_3 S_3 c, \]

where \( S_1 = 1_{12}^T \otimes R_1(x_0, x_{i2}), S_2 = \{ R_1(u_0, x_{i2})W \} \otimes 1_{12}/12 \), and \( S_3 = z^T \otimes R_1(x_0, x_{i2}) \). The interaction \( f_{2,12} \) is a bivariate function. Thus, we evaluate it at a bivariate grid \( \{ (u_{0k}, x_{0l}) : k, l = 1, \ldots, n_0 \} \):

\[ \hat{f}_{2,12}(u_{0k}, x_{0l}) = \theta_4 \sum_{i=1}^{n} c_i \left( \int_0^1 w_{i|[}^i(v) R_1(u_{0k}, v) dv \right) R_1(x_{0l}, x_{i2}) \]

\[ \approx \theta_4 \sum_{i=1}^{n} c_i S_2[k, i] S_1[l, i]. \]
Then \((\hat{f}_{2,12}(u_{01},x_{01}), \ldots, \hat{f}_{2,12}(u_{01},x_{0n}), \ldots, \hat{f}_{2,12}(u_{0n},x_{01}), \ldots, \hat{f}_{2,12}(u_{0n},x_{0n})) = \theta_4 S_4 c\), where \(S_4\) is an \(n_0^2 \times n\) matrix with elements 
\[S_4[(k-1)n_0 + l, i] = S_2[k, i] S_1[l, i]\] for \(k, l = 1, \ldots, n_0\) and \(i = 1, \ldots, n\).

\[
\begin{align*}
\text{ngrid} & \leftarrow 40; \text{xgrid} \leftarrow \text{seq}(0,1,\text{len=ngrid}) \\
\text{S1} & \leftarrow \text{kronecker(t(rep(1,35)), periodic(xgrid,x))} \\
\text{S2} & \leftarrow \text{kronecker(periodic(xgrid,x)%%W, t(rep(1,12)))/12} \\
\text{S3} & \leftarrow \text{kronecker(t(z), periodic(xgrid,x))} \\
\text{S4} & \leftarrow \text{NULL} \\
\text{for} \ (k \ \text{in} \ 1:\text{ngrid}) \ {\{} \\
& \quad \text{for} \ (l \ \text{in} \ 1:\text{ngrid}) \ \text{S4} \leftarrow \text{rbind(S4, S1[1,]*S2[k,])} \\
\text{the} & \leftarrow \text{10^canada.fit4$rkp4.obj$theta} \\
\text{f1} & \leftarrow \text{canada.fit4$coef$d[1]} \\
& \quad +\text{the[1]*S1%*%canada.fit4$coef$c} \\
\text{mu2} & \leftarrow \text{canada.fit4$coef$d[2]} \\
\text{f21} & \leftarrow \text{the[2]*S2%*%canada.fit4$coef$c} \\
\text{f22} & \leftarrow \text{the[3]*S3%*%canada.fit4$coef$c} \\
\text{f212} & \leftarrow \text{the[4]*S4%*%canada.fit4$coef$c} \\
\text{f2} & \leftarrow \text{mu2*rep(f21,rep(ngrid,ngrid))+rep(f22,ngrid)+f212}
\end{align*}
\]

Figures 8.5 displays the estimates of \(f_1\) and \(f_2\).

FIGURE 8.5  Canadian weather data, estimates of \(f_1\) (left) and \(f_2\) (right).
8.4.2 Superconductivity Magnetization Modeling

In this section we use the superconductivity data to illustrate how to check a nonlinear regression model. Figure 8.6 displays magnetization versus time on logarithmic scale.

![Figure 8.6](image)

It seems that a straight line (Anderson and Kim model) can fit data well (Yeshurun, Malozemoff and Shaulov 1996). Let \( y \) be magnetism values, and \( x \) be logarithm of time scaled into the interval \([0, 1]\). To check the Anderson and Kim model, we fit a cubic spline with the GML choice of the smoothing parameter:

```r
> library(NISTnls)
> a <- Bennett5; x <- ident(a$x); y <- a$y
> super.cub <- ssr(y~x, cubic(x), spar='m')
> anova(super.cub, simu.size=1000)
```

<table>
<thead>
<tr>
<th>test.value</th>
<th>simu.size</th>
<th>simu.p-value</th>
<th>approximate.p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP</td>
<td>0.1512787</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>GML</td>
<td>0.0162213</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \( f_1 \) be the projection onto the space \( W^2_2[0, 1] \odot \{1, x - 0.5\} \) which rep-
represents the systematic departure from the straight line model. Both the LMP and GML tests for the hypothesis $H_0: f_1(x) = 0$ conclude that the departure from the straight line model is statistically significant. Figure 8.7(a) shows the estimate of $f_1$ with 95% Bayesian confidence intervals. Those confidence intervals also indicate that, though small, the departure from a straight line is statistically significant. The deviation from the Anderson and Kim model has been noticed for high-temperature superconductors, and the following “interpolation formula” was proposed (Bennett, Swartzendruber, Blendell, Habib and Seyoum 1994, Yeshurun et al. 1996):

$$y = \beta_1(\beta_2 + x)^{-\frac{1}{b_3}} + \epsilon.$$  \hfill (8.49)

The nonlinear regression model (8.49) is fitted as follows:

```r
> b10 <- -1500*(max(a$x)-min(a$x))**(-1/0.85)
> b20 <- (45+min(a$x))/(max(a$x)-min(a$x))
> super.nls <- nls(y~b1*(b2+x)**(-1/b3),
start=list(b1=b10,b2=b20,b3=0.85))
```

The initial values were computed based on one set of initial values provided in the help file of `Bennett5`. The fit of the above NLR model is shown in Figure 8.6. To check the “interpolation formula”, we can fit a nonlinear partial spline model

$$y = \beta_1(\beta_2 + x)^{-\frac{1}{b_3}} + f_2(x) + \epsilon,$$  \hfill (8.50)

with $f_2 \in W^2_2[0,1]$. Model (8.50) is a special case of the SNR model, which can be fitted as follows:

```r
> bh <- coef(super.nls)
> super.snr <- snr(y~b1*(b2+x)**(-1/b3)+f(x),
params=list(b1+b2+b3~1),
func=f(u)~list(~I(u-.5), cubic(u)),
start=list(params=bh), spar='m')
> summary(super.snr)
```

...  

<table>
<thead>
<tr>
<th>Coefficients:</th>
<th>Value</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>-466.4197</td>
<td>32.05006</td>
<td>-14.55285</td>
<td>0</td>
</tr>
<tr>
<td>b2</td>
<td>11.2296</td>
<td>0.21877</td>
<td>51.33033</td>
<td>0</td>
</tr>
<tr>
<td>b3</td>
<td>0.9322</td>
<td>0.01719</td>
<td>54.22932</td>
<td>0</td>
</tr>
</tbody>
</table>

...  

GML estimate(s) of smoothing spline parameter(s):

0.0001381760

Equivalent Degrees of Freedom (DF) for spline function:
We used the estimates of parameters in (8.49), $\mathbf{b}_h$, as initial values for $\beta_1$, $\beta_2$, and $\beta_3$. The fit of model (8.50) is shown in Figure 8.6. To check if the departure from model (8.49), $f_2$, is significant, we compute posterior means and standard deviations for $f_2$:

$$> \text{super.snr.pred} \leftarrow \text{intervals(super.snr)}$$

The estimate of $f_2$ and its 95% Bayesian confidence intervals are shown in Figure 8.7(b). The magnitude of $f_2$ is very small. The zero line is outside the confidence intervals in some regions.

An alternative approach to checking the NLR model (8.49) is to use the $L$-spline introduced in Section 2.11. Consider the regression model (2.1) where $f \in W^2_2[0,1]$. For fixed $\beta_2$ and $\beta_3$, it is clear that the space corresponding to the “interpolation formula”

$$\mathcal{H}_0 = \text{span}\{(\beta_2 + x)^{-\frac{1}{\beta_3}}\}$$

is the kernel of the differential operator

$$L = D + \frac{1}{\beta_3(\beta_2 + x)}.$$
Let $H_1 = W^2_2[0,1] \ominus H_0$. The Green function

$$G(x,s) = \begin{cases} \left( \frac{\beta_2 + s}{\beta_2 + x} \right)^{\frac{1}{\beta_3}}, & s \leq x, \\ 0, & s > x. \end{cases}$$

Therefore, the RK of $H_1$

$$R_1(x,z) = \int_0^1 \left( \frac{\beta_2 + s}{\beta_2 + x} \right)^{\frac{1}{\beta_3}} \left( \frac{\beta_2 + s}{\beta_2 + z} \right)^{\frac{1}{\beta_3}} ds$$

$$= C(\beta_2 + x)^{\frac{1}{\beta_3}} (\beta_2 + z)^{-\frac{1}{\beta_3}}, \quad (8.51)$$

where $C = \int_0^1 (\beta_2 + s)^{\frac{1}{\beta_3}} ds$. We fit the $L$-spline model as follows:

```r
> ip.rk <- function(x,b2,b3) ((b2+x)%o%(b2+x))**(-1/b3)
> super.l <- ssr(y~I((bh[2]+x)**(-1/bh[3]))-1, rk=ip.rk(x,bh[2],bh[3]), spar=''m'')
```

The function `ip.rk` computes the RK $R_1$ in (8.51) with the constant $C$ being ignored since it can be absorbed by the smoothing parameter. The values of $\beta_2$ and $\beta_3$ are fixed as the estimates from the nonlinear regression model (8.49). Let $f_3$ be the projection onto the space $H_1$ which represents the systematic departure from the “interpolation formula”. Figure 8.7(c) shows the estimate of $f_3$ with 95% Bayesian confidence intervals. The systematic departure from the “interpolation formula” is essentially zero.

### 8.4.3 Oil-Bearing Rocks

The rock data set contains measurements on four cross sections of each of 12 oil-bearing rocks. The aim is to predict permeability ($\text{perm}$) from three other measurements: the total area ($\text{area}$), total perimeter ($\text{peri}$) and a measure of “roundness” of the pores in the rock cross section ($\text{shape}$). Let $y = \log(\text{perm})$, $x_1 = \text{area}/10000$, $x_2 = \text{peri}/10000$ and $x_3 = \text{shape}$. A full multivariate nonparametric model such as an SS ANOVA model is not desirable in this case since there are only 48 observations. Consider the projection pursuit regression model (8.1) with $r = 2$. Let $\beta_k = (\beta_{k1}, \beta_{k2}, \beta_{k3})^T$ for $k = 1,2$. For identifiability, we use spherical coordinates $\beta_{k1} = \sin(\alpha_{k1}) \cos(\alpha_{k2})$, $\beta_{k2} = \sin(\alpha_{k1}) \sin(\alpha_{k2})$, and $\beta_{k3} = \cos(\alpha_{k1})$, which satisfy the side condition $\beta_{k1}^2 + \beta_{k2}^2 + \beta_{k3}^2 = 1$. Then we have the following SNR model:

$$y = \beta_0 + f_1(\sin(\alpha_{11}) \cos(\alpha_{12}) x_1 + \sin(\alpha_{11}) \sin(\alpha_{12}) x_2 + \cos(\alpha_{11}) x_3)$$

$$+ f_2(\sin(\alpha_{21}) \cos(\alpha_{22}) x_1 + \sin(\alpha_{21}) \sin(\alpha_{22}) x_2 + \cos(\alpha_{21}) x_3) + \epsilon.$$  

(8.52)
Note that the domains of $f_1$ and $f_2$ are not fixed intervals since they depend on unknown parameters. We model $f_1$ and $f_2$ using the one-dimensional thin-plate spline space $W^2_2(\mathbb{R})$. To make $f_1$ and $f_2$ identifiable with the constant $\beta_0$, we remove the constant functions from the model space. That is, we assume that $f_1, f_2 \in W^2_2(\mathbb{R}) \cap \{1\}$. Random errors are assumed to be iid. Bounds on parameters $\alpha_{kj}$ are ignored for simplicity.

```r
> attach(rock)
> y <- log(perm)
> x1 <- area/10000; x2 <- peri/10000; x3 <- shape
> rock.ppr <- ppr(y~x1+x2+x3, nterms=2, max.terms=5)
> b.ppr <- rock.ppr$alpha
> allini <- acos(b.ppr[3,1]/sqrt(sum(b.ppr[,1]**2)))
> a12ini <- atan(b.ppr[2,1]/b.ppr[1,1])
> a21ini <- acos(b.ppr[3,2]/sqrt(sum(b.ppr[,2]**2)))
> a22ini <- atan(b.ppr[2,2]/b.ppr[1,2])
> rock.snr <- snr(y~b0 +f1(sin(all1)*cos(all2)*x1+sin(all1)*sin(all2)*x2 +cos(all1)*x3) +f2(sin(a21)*cos(a22)*x1+sin(a21)*sin(a22)*x2 +cos(a21)*x3),
 func=list(f1(u)~list(~u-1,tp(u)),
 f2(v)~list(~v-1,tp(v))),
 params=list(b0+all1+a12+a21+a22~1), spar=’m’,
 start=list(params=c(mean(y),allini,a12ini,
 a21ini,a22ini)),
 control=list(prec.out=1.e-3,maxit.out=50))
> summary(rock.snr)
... Coefficients:
 Value Std.Error t-value p-value
b0 5.341747 0.31181572 17.13110 0.0000
a11 1.574432 0.04597406 34.24610 0.0000
a12 -1.221826 0.01709925 -71.45495 0.0000
a21 0.836215 0.26074376 3.20704 0.0025
a22 -1.010785 0.02919986 -34.61607 0.0000
... GML estimate(s) of smoothing spline parameter(s):
 1.173571e-05 1.297070e-05 Equivalent Degrees of Freedom (DF) for spline function:
 8.569932 Residual standard error: 0.7337079
```
> a <- rock.snr$coef[-1]
> u <- sin(a[1])*cos(a[2])*x1+sin(a[1])*sin(a[2])*x2
>     +cos(a[1])*x3
> v <- sin(a[3])*cos(a[4])*x1+sin(a[3])*sin(a[4])*x2
>     +cos(a[3])*x3
> ugrid <- seq(min(u),max(u),len=50)
> vgrid <- seq(min(v),max(v),len=50)
> rock.snr.ci <- intervals(rock.snr,
>     newdata=data.frame(u=ugrid,v=vgrid))

We fitted the projection pursuit regression model using the \texttt{ppr}
function in R first (Venables and Ripley 2002) and used the estimates
to compute initial values for spherical coordinates. The estimates and
posterior standard deviations of $f_1$ and $f_2$ were computed at grid points
using the \texttt{intervals} function. Figure 8.8 shows the estimates of $f_1$
and $f_2$ with 95\% Bayesian confidence intervals. It is interesting to note
that the overall shapes of the estimated functions from \texttt{ppr} (Figure 8.9
in Venables and Ripley (2002)) and \texttt{snr} are comparable even though
the estimation methods are quite different.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8_8.png}
\caption{Rock data, estimates of $f_1$ (left) and $f_2$ (right). Shaded
regions are 95\% Bayesian confidence intervals.}
\end{figure}

\section*{8.4.4 Air Quality}

The air quality data set contains daily measurements of the ozone con-
centration (\texttt{Ozone}) in parts per million and three meteorological vari-
ables: wind speed (\texttt{Wind}) in miles per hour, temperature (\texttt{Temp}) in de-
degrees Fahrenheit, and solar radiation (Solar.R) in Langleys. The goal is to investigate how the air pollutant ozone concentration depends on three meteorological variables. Let \( y = Ozone^{1/3} \), \( x_1 = Wind \), \( x_2 = Temp \), and \( x_3 = Solar.R \). Yu and Ruppert (2002) considered the following partially linear single index model

\[
y = f_1(\beta_1 x_1 + \beta_2 x_2 + \sqrt{1 - \beta_1^2 - \beta_2^2} x_3) + \epsilon.
\]

(8.53)

Note that, for identifiability, \( \sqrt{1 - \beta_1^2 - \beta_2^2} \) is used to represent the coefficient for \( x_3 \) such that it is positive and the summation of all squared coefficients equals 1. Random errors are assumed to be iid. We model \( f_1 \) using the one-dimensional thin-plate spline space \( W_2^2(\mathbb{R}) \). The single index model (8.53) is an SNR model that can be fitted as follows:

```r
t > air <- na.omit(airquality)
t > attach(air)
t > y <- Ozone^(1/3)
t > x1 <- Wind; x2 <- Temp; x3 <- ident(Solar.R)
t > air.snr.1 <- snr(y~f1(b1*x1+b2*x2+sqrt(1-b1^2-b2^2)*x3),
 func=f1(u)~list(~u, rk=tp(u)),
 params=list(b1+b2~1), spar=''m'',
 start=list(params=c(-0.8,.5)),
 control=list(maxit.out=50))
```

The condition \( \beta_1^2 + \beta_2^2 < 1 \) is ignored for simplicity. The estimate of \( f_1 \) and its 95% Bayesian confidence intervals are shown in Figure 8.9(a). The estimate of \( f_1 \) is similar to that in Yu and Ruppert (2002).

Yu and Ruppert (2002) also considered the following partially linear single index model

\[
y = f_2(\beta_1 x_1 + \sqrt{1 - \beta_1^2} x_2) + \beta_2 x_3 + \epsilon.
\]

(8.54)

The following statement fits model (8.54) with \( f_2 \in \mathbb{W}_2^2(\mathbb{R}) \):

```r
t > air.snr.2 <- snr(y~f2(b1*x1+sqrt(1-b1^2)*x2)+b2*x3,
 func=f2(u)~list(~u, rk=tp(u)),
 params=list(b1+b2~1), spar=''m'',
 start=list(params=c(-0.8,1.3))
```

The estimates of \( f_2 \) and \( \beta_2 x_3 \) are shown in Figure 8.9(b)(c). The effect of radiation may be nonlinear. So, we further fit the following SNR model

\[
y = f_3(\beta_1 x_1 + \sqrt{1 - \beta_1^2} x_2) + f_4(x_3) + \epsilon.
\]

(8.55)

Again, we model \( f_3 \) using the space \( \mathbb{W}_2^2(\mathbb{R}) \). Since the domain of \( x_3 \) is \([0,1]\), we model \( f_4 \) using the cubic spline space \( \mathbb{W}_2^2[0,1] \cap \{1\} \) where constant functions are removed for identifiability.
FIGURE 8.9 Air quality data, (a) observations (dots), and the estimate of $f_1$ (solid line) with 95% Bayesian confidence intervals; (b) partial residuals after removing the radiation effect (dots), the estimates of $f_2$ (dashed line) and $f_3$ (solid line), and 95% Bayesian confidence intervals (shaded region) for $f_3$; and (c) partial residuals after removing the index effects based on wind speed and temperature (dots), the estimates of $\beta_2 x_3$ in model (8.54) (dashed line) and $f_4$ (solid line), and 95% Bayesian confidence intervals (shaded region) for $f_4$.

```r
> air.snr.3 <- snr(y~f3(a1*x1+sqrt(1-a1^2)*x2)+f4(x3),
 func=list(f3(u)~list(~u, rk=tp(u)),
 f4(v)~list(~v-1, rk=cubic(v))),
 params=list(a1~1), spar="m",
 start=list(params=c(-0.8)))
```

Estimates of $f_3$ and $f_4$ are shown in Figure 8.9(b)(c). The estimate of $f_4$ increases with increasing radiation until a value of about 250 Langleys, after which it is flat. The difference between $\hat{f}_4$ and the linear estimate is not significant based on confidence intervals, perhaps due to the small sample size. To compare three models (8.53), (8.54), and (8.55), we compute AIC, BIC, and GCV criteria:

```r
> n <- 111
> rss <- c(sum((y-air.snr.1$fitted)**2),
 sum((y-air.snr.2$fitted)**2),
 sum((y-air.snr.3$fitted)**2))/n
> df <- c(air.snr.1dff+air.snr.1dfpara,
 air.snr.2dff+air.snr.2dfpara,
 air.snr.3dff+air.snr.3dfpara)
> gcv <- rss/(1-df/n)**2
> aic <- n*log(rss)+2*df
> bic <- n*log(rss)+log(n)*df
```
> print(round(rbind(aic, bic, gcv),4))

<table>
<thead>
<tr>
<th></th>
<th>aic</th>
<th>bic</th>
<th>gcv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-156.9928</td>
<td>-139.6195</td>
<td>0.2439</td>
</tr>
<tr>
<td></td>
<td>-176.5754</td>
<td>-157.8198</td>
<td>0.2046</td>
</tr>
<tr>
<td></td>
<td>-177.3056</td>
<td>-155.7608</td>
<td>0.2035</td>
</tr>
</tbody>
</table>

AIC and GCV select model (8.55), while BIC selects model (8.54).

### 8.4.5 The Evolution of the Mira Variable R Hydrae

The star data set contains magnitude (brightness) of the Mira variable R Hydrae during 1900–1950. Figure 8.10 displays observations over time. The Mira variable R Hydrae is well known for its declining period and amplitude. We will consider three SNR models in this section to investigate the pattern of the decline.

![Figure 8.10 Star data, plot of observations (points), and the fit based on model (8.58) (solid line).](image)

Let \( y = \text{magnitude} \) and \( x = \text{time} \). We first consider the following SNR model (Genton and Hall 2007)

\[
y = a(x)f_1(t(x)) + \epsilon, \tag{8.56}
\]

where \( y \) is the magnitude on day \( x \), \( a(x) = 1 + \beta_1 x \) is the amplitude
function, \( f_1 \) is the common periodic shape function with unit period, 
\( t(x) = \log(1 + \beta_1 x/\beta_2)/\beta_3 \) is a time transformation function, and \( \epsilon \) is a random error. Random errors are assumed to be iid. The function \( 1/t'(x) \) can be regarded as the period function. Therefore, model (8.56) assumes that the amplitude and period evolve linearly. Since \( f_1 \) is close to a sinusoidal function, we model \( f_1 \) using the trigonometric spline with 
\( L = D \{ D^2 + (2\pi)^2 \} \) \((m = 2 \text{ in } (2.67))\) and \( f_1 \in W^2_2(\text{per}) \). Model (8.56) can be fitted as follows:

```r
> data(star); attach(star)
> star.fit.1 <- snr(y~(1+b1*x)*f1(log(1+b3*x/b2)/b3),
 func=list(f1(u)~list(~sin(2*pi*u)+cos(2*pi*u),
 lspline(u,type='sine1'))),
 params=list(b1+b2+b3~1), spar='m',
 start=list(params=c(0.0000003694342,419.2645,
 -0.00144125)))
> summary(star.fit.1)
...
Coefficients:
 Value Std.Error t-value p-value
b1 0.0000 0.00000035 1.0163 0.3097
b2 419.2485 0.22553623 1858.8966 0.0000
b3 -0.0014 0.00003203 -44.8946 0.0000
...

GML estimate(s) of smoothing spline parameter(s):
0.9999997
Equivalent Degrees of Freedom (DF) for spline function:
3.000037
Residual standard error: 0.925996
```

We computed posterior means and standard deviations of \( f_1 \) and its projection onto the subspace \( W^2_2(\text{per}) \odot \{1, \sin 2\pi x, \cos 2\pi x\} \), \( P_1 f_1 \), using the `intervals` function. Estimate of \( f_1 \) and its 95% Bayesian confidence intervals are shown in Figure 8.11(a). We computed folded observations at
day $x$ as $\tilde{y} = y/(1 + \hat{\beta}_1 x)$ and $\tilde{x} = \hat{\ell}(x) - \lfloor \hat{\ell}(x) \rfloor$, where $z - \lfloor z \rfloor$ represents the fractional part of $z$. The folded observations are shown in Figure 8.11(a). The projection $P_1 f_1$ represents the departure from the sinusoidal model space span\{1, \sin 2\pi x, \cos 2\pi x\}. Figure 8.11(b) indicates that the function $f_1$ is not significantly different from a sinusoidal model since $P_1 f_1$ is not significantly different from zero.

Assuming that the periodic shape function can be well modeled by a sinusoidal function, we can investigate the evolving amplitude and period nonparametrically. We first consider the following SNR model

$$y = \beta_1 + \exp\{f_2(x)\} \sin[2\pi \{\beta_2 + \log(1 + \beta_4 x/\beta_3)/\beta_4\}] + \epsilon,$$  

(8.57)

where $\beta_1$ is a parameter of the mean, $\exp\{f_2(x)\}$ is the amplitude function, and $\beta_2$ is a phase parameter. Note that the exponential transformation is used to enforce the positive constraint on the amplitude. We model $f_2$ using the cubic spline model space $W_2^3[0, b]$, where $b$ equals the maximum of $x$. Model (8.57) can be fitted as follows:

```r
> star.fit.2 <- snr(y ~ b1 +
 exp(f2(x))*sin(2*pi*(b2+log(1+b4*x/b3)/b4)),
 func=list(f2(u)~list(~u,cubic2(u))),
 params=list(b1+b2+b3+b4~1), spar='m',
```

![Figure 8.11](image-url)  

**FIGURE 8.11** Star data, (a) folded observations (points), estimate of $f_1$ (solid line), and 95% Bayesian confidence intervals (shaded region); and (b) estimate of $P_1 f_1$ (solid line) and 95% Bayesian confidence intervals (shaded region).
We used the logarithm of the range of \( f_1 \) in model (8.56) as initial values for \( f_2 \). We also limited the search range for \( \log_{10}(n\lambda) \), where \( n \) is the number of observations. To look at the general pattern of the amplitudes, we compute the amplitude for each period by fitting a sinusoidal model for each period of the folded data containing more than five observations. The logarithm of these estimated amplitudes and estimates of the amplitude functions based on models (8.56) and (8.57) are shown in Figure 8.12(a). Apparently, the amplitudes are underestimated based on these models.

Finally, we consider the following SNR model

\[
y = \beta + \exp\{f_3(x)\} \sin\{2\pi f_4(x)\} + \epsilon,
\]

where both the amplitude and period functions are modeled nonparametrically. We model \( f_3 \) and \( f_4 \) using the cubic spline model space \( W_2^2[0,b] \). Model (8.58) can be fitted as follows:

\begin{verbatim}
> co <- star.fit.2$coef
> star.fit.3 <- snr(y~b+exp(f3(x))*sin(2*pi*f4(x)),
    func=list(f3(u)+f4(u)~list(~u,cubic2(u))),
    params=list(b~1), spar='m',
    start=list(params=c(7.1726),
        f=list(f3=star.fit.2$funcFitted,f4=f4ini)),
    control=list(prec.out=.001,
        rkpk.control=list(limnla=c(12,14))))
\end{verbatim}
FIGURE 8.12 Star data, (a) estimated amplitudes based on folded data (circles), estimate of the amplitude function $a(x)$ in model (8.56) rescaled to match the amplitude function in model (8.57) (dashed line), estimate of the amplitude function $\exp(f_2(x))$ in model (8.57) (solid line), and 95% Bayesian confidence intervals (shaded region), all on logarithmic scale; (b) estimated amplitudes based on folded data (circles), estimate of the amplitude function $\exp(f_3(x))$ in model (8.57) (solid line), and 95% Bayesian confidence intervals (shaded region), all on logarithmic scale; (c) estimate of $f_4$ based on model (8.58) (solid line) and 95% Bayesian confidence intervals (shaded region); and (d) estimated periods based on the CLUSTER method (circles) and estimate of the period function $1/f_4(x)$.

```r
rkpk.control=list(limnla=c(12,14)))
> n <- length(y)
> rss <- c(sum((y-star.fit.1$fitted)**2),
 sum((y-star.fit.2$fitted)**2),
 sum((y-star.fit.3$fitted)**2))/n
```
We used the fitted values of the corresponding components from models (8.57) and (8.56) as initial values for $f_3$ and $f_4$. We also computed AIC, BIC, and GCV criteria for models (8.56), (8.57), and (8.58). Model (8.58) fits data much better, and the overall fit is shown in Figure 8.10. AIC, BIC, and GCV all select model (8.58). Estimates of functions $f_3$ and $f_4$ are shown in Figure 8.12(b)(c). The confidence intervals for $f_4$ are so narrow that they are indistinguishable from the estimate of $f_4$. The amplitude function $f_3$ fits data much better. To look at the general pattern of the periods, we first identify peaks using the CLUSTER method (Yang, Liu and Wang 2005). Observed periods are estimated as the lengths between peaks, and they are shown in Figure 8.12(d). The estimate of period function $1/f_4$ in Figure 8.12(d) indicates that the evolution of the period may be nonlinear. By allowing a nonlinear period function, the model (8.58) leads to a much improved overall fit with less biased estimate of the amplitude function.

8.4.6 Circadian Rhythm

Many biochemical, physiological, and behavioral processes of living matters follow a roughly 24-hour cycle known as the circadian rhythm. We use the hormone data to illustrate how to fit a SIM to investigate circadian rhythms. The hormone data set contains cortisol concentration measured every 2 hours for a period of 24 hours from multiple subjects. In this section we use observations from normal subjects only. Cortisol concentrations on the log$_{10}$ scale from nine normal subjects are shown in Figure 8.13.

It is usually assumed that there is a common shape function for all individuals. The time axis may be shifted and the magnitude of variation may differ between subjects; that is, there may be phase and amplitude differences between subjects. Therefore, we consider the following SIM

$$conc_{ij} = \beta_{i1} + \exp(\beta_{i2})f(time_{ij} - \text{alogit}(\beta_{i3})) + \epsilon_{ij},$$

$i = 1, \ldots, m, \ j = 1, \ldots, n_i,$

(8.59)
FIGURE 8.13 Hormone data, plots of cortisol concentrations (circles), and the fitted curves (solid lines) based on model (8.59). Subjects’ ID are shown in the strip.
where $m$ is the total number of subjects, $n_i$ is the number of observations from subject $i$, $\text{conc}_{ij}$ is the cortisol concentration (on log$_{10}$ scale) of the $i$th subject at the $j$th time point $\text{time}_{ij}$, $\beta_{i1}$ is the 24-hour mean of the $i$th subject, $\exp(\beta_{i2})$ is the amplitude of the $i$th subject, $\text{alognit}(\beta_{i3}) = \exp(\beta_{i3})/(1 + \exp(\beta_{i3}))$ is the phase of the $i$th subject, and $\epsilon_{ij}$ are random errors. Note that the variable $\text{time}$ is transformed into the interval $[0, 1]$, the exponential transformation is used to enforce positive constraint on the amplitude, and the inverse logistic transformation $\text{alognit}$ is used such that the phase is inside the interval $[0, 1]$.

Comparing with the SIM model (8.33), there is no scale parameter $\beta_4$ in model (8.59) since the period is fixed to be 1. The function $f$ is the common shape function. Since it is a periodic function with period 1, we model $f$ using the trigonometric spline with $\mathcal{L} = D^2 + (2\pi)^2 (m = 2$ in (2.70)) and $f \in W^2_2(\text{per}) \ominus \{1\}$ where constant functions are removed from the model space to make $f$ identifiable with $\beta_{i1}$. In order to make $\beta_{i2}$ and $\beta_{i3}$ identifiable with $f$, we add constraints: $\beta_{21} = \beta_{31} = 0$. Model (8.59) is an SNR model for clustered data. Assuming random errors are iid, model (8.59) can be fitted as follows:

```r
> data(horm.cort)
> nor <- horm.cort[horm.cort$type=="normal",]
> M <- model.matrix(~as.factor(ID), data=nor)
> nor.snr.fit1 <- snr(conc~b1+exp(b2)*f(time-alognit(b3)),
 func=\text{f(u)} \sim \text{list(\text{sin}(2*pi*u)+\text{cos}(2*pi*u)-1,
 \text{lspline}(u,\text{type}='\text{sine0}')\text{))},
 params=list(b1~M-1, b2+b3~M[-1]-1),
 start=list(params=c(mean(nor$conc),rep(0,24))),
 data=nor, spar='m',
 control=list(prec.out=0.001,converg='PRSS'))
```

Note that the second-stage models for parameters were specified by the `params` argument. We removed the first column in the design matrix $M$ to satisfy the side condition $\beta_{21} = \beta_{31} = 0$. We used the option `converg='PRSS'` instead of the default `converg='COEF'` because this option usually requires fewer number of iterations. We compute fitted curves for all subjects evaluated at grid points:

```r
> nor.grid <- data.frame(ID=rep(unique(nor$ID),rep(50,9)),
 time=rep(seq(0,1,len=50),9))
> M <- model.matrix(~as.factor(ID), data=nor.grid)
> nor.snr.p <- predict(nor.snr.fit1,newdata=nor.grid)
```

Note that the matrix $M$ needs to be generated again for the grid points. The fitted curves for all subjects are shown in Figure 8.13.
ther compute the posterior means and standard deviations of $f$ and its projection onto $W^2_2(\text{per}) \ominus \{1, \sin 2\pi x, \cos 2\pi x\}$, $P_1 f$, as follows:

```r
> grid <- seq(0,1,len=100)
> nor.snr.p.f <- intervals(nor.snr.fit1,
 newdata=data.frame(u=grid),
 terms=list(f=matrix(c(1,1,1,0,0,1),nrow=2,byrow=T)))
```

The estimates of $f$ and its projection $P_1 f$ are shown in Figure 8.14. It is obvious that $P_1 f$ is significantly different from zero. Thus a simple sinusoidal model may not be appropriate for this data.

![Diagram](image.png)

**FIGURE 8.14** Hormone data, (a) estimate of $f$ (solid line), and 95% Bayesian confidence intervals (shaded region); and (b) estimate of $P_1 f$ (solid line) and 95% Bayesian confidence intervals (shaded region).

Random errors in model (8.59) may be correlated. In the following we fit with an AR(1) within-subject correlation structure:

```r
> M <- model.matrix(~as.factor(subject))
> nor.snr.fit2 <- update(nor.snr.fit1,
 cor=corAR1(form=~1|subject))
> summary(nor.snr.fit2)
```

... Correlation Structure: AR(1)

Formula: ~1 | subject

Parameter estimate(s):

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
</tr>
<tr>
<td>-0.1557776</td>
</tr>
</tbody>
</table>

...
The lag 1 autocorrelation coefficient is small. We will further discuss how to deal with possible correlation within each subject in Section 9.4.5.
9.1 Linear Mixed-Effects Models

Mixed-effects models include both fixed effects and random effects, where random effects are usually introduced to model correlation within a cluster and/or spatial correlations. They provide flexible tools to model both the mean and the covariance structures simultaneously.

The simplest mixed-effects model is perhaps the classical two-way mixed model. Suppose A is a fixed factor with $a$ levels, B is a random factor with $b$ levels, and the design is balanced. The two-way mixed model assumes that

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}, \quad i = 1, \ldots, a; \quad j = 1, \ldots, b; \quad k = 1, \ldots, m, \quad (9.1)$$

where $y_{ijk}$ is the $k$th observation at level $i$ of factor A and level $j$ of factor B, $\mu$ is the overall mean, $\alpha_i$ and $\beta_j$ are main effects, $(\alpha\beta)_{ij}$ is the interaction, and $\epsilon_{ijk}$ are random errors. Since factor B is random, $\beta_j$ and $(\alpha\beta)_{ij}$ are random effects. It is usually assumed that $\beta_j \overset{iid}{\sim} \mathcal{N}(0, \sigma^2_b)$, $(\alpha\beta)_{ij} \overset{iid}{\sim} \mathcal{N}(0, \sigma^2_{\alpha\beta})$, $\epsilon_{ijk} \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$, and they are mutually independent.

Another simple mixed-effects model is the linear growth curve model. Suppose a response variable is measured repeatedly over a period of time or a sequence of doses from multiple individuals. Assume that responses across time or doses for each individual can be described by a simple straight line, while the intercepts and slopes for different individuals may differ. Then, one may consider the following linear growth curve model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{1i} + b_{2i} x_{ij} + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i, \quad (9.2)$$

where $y_{ij}$ is the observation from individual $i$ at time (or does) $x_{ij}$, $\beta_0$ and $\beta_1$ are the population intercept and slope, $b_{1i}$ and $b_{2i}$ are random effects.
representing individual \( i \)'s departures in intercept and slope from the population parameters, and \( \epsilon_{ij} \) are random errors. Let \( \mathbf{b}_i = (b_{1i}, b_{2i})^T \).

It is usually assumed that \( \mathbf{b}_i \overset{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma^2 D) \) for certain covariance matrix \( D \), and random effects and random errors are mutually independent.

A general linear mixed-effects (LME) model assumes that
\[
y = S\beta + Z\mathbf{b} + \mathbf{\epsilon},
\]
(9.3)
where \( y \) is an \( n \)-vector of observations on the response variable, \( S \) and \( Z \) are design matrices for fixed and random effects, respectively, \( \beta \) is a \( q_1 \)-vector of unknown fixed effects, \( \mathbf{b} \) is a \( q_2 \)-vector of unobservable random effects, and \( \mathbf{\epsilon} \) is an \( n \)-vector of random errors. We assume that \( \mathbf{b} \sim \mathcal{N}(\mathbf{0}, \sigma^2 D), \mathbf{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \Lambda) \), and \( \mathbf{b} \) and \( \mathbf{\epsilon} \) are independent. Note that \( y \sim \mathcal{N}(S\beta, \sigma^2 (ZDZ^T + \Lambda)) \). Therefore, the mean structure is modeled by the fixed effects, and the covariance structure is modeled by the random effects and random errors.

As discussed in Sections 3.5, 4.7, 5.2.2, and 7.3.3, smoothing spline estimates can be regarded as the BLUP estimates of the corresponding LME and NLME (nonlinear mixed-effects) models. Furthermore, the GML (generalized maximum likelihood) estimates of smoothing parameters are the REML (restricted maximum likelihood) estimates of variance components in the corresponding LME and NLME models. These connections between smoothing spline models and mixed-effects models will be utilized again in this chapter. In particular, details for the connection between semiparametric linear mixed-effects models and LME models will be given in Section 9.2.2.

### 9.2 Semiparametric Linear Mixed-Effects Models

#### 9.2.1 The Model

A semiparametric linear mixed-effects (SLM) model assumes that
\[
y_i = s_i^T \beta + \sum_{k=1}^r \mathcal{L}_{ki} f_k + z_i^T \mathbf{b} + \epsilon_i, \quad i = 1, \ldots, n,
\]
(9.4)
where \( s \) and \( z \) are independent variables for fixed and random effects respectively, \( \beta \) is a \( q_1 \)-vector of parameters, \( \mathbf{b} \) is a \( q_2 \)-vector of random effects, \( \mathcal{L}_{ki} \) are bounded linear functionals, \( f_k \) are unknown functions, and \( \epsilon \) are random errors. For \( k = 1, \ldots, r \), denote \( \mathcal{X}_k \) as the domain of \( f_k \) and assume that \( f_k \in \mathcal{H}_k \), where \( \mathcal{H}_k \) is an RKHS on \( \mathcal{X}_k \).
Let \( y = (y_1, \ldots, y_n)^T, S = (s_1, \ldots, s_n)^T, Z = (z_1, \ldots, z_n)^T, f = (f_1, \ldots, f_r), \gamma(f) = (\sum_{k=1}^r \mathcal{L}_{k1}f_k, \ldots, \sum_{k=1}^r \mathcal{L}_{kn}f_k)^T, \) and \( \epsilon = (\epsilon_1, \ldots, \epsilon_n)^T. \) Then model (9.4) can be written in the vector form
\[
y = S\beta + \gamma(f) + Zb + \epsilon. \tag{9.5}
\]
We assume that \( b \sim N(0, \sigma^2D), \epsilon \sim N(0, \sigma^2\Lambda), \) and they are mutually independent. It is clear that model (9.5) is an extension of the LME model with an additional term for nonparametric fixed effects. We note that the random effects are general. Stochastic processes including those based on smoothing splines can be used to construct models for random effects. Therefore, in a sense, the random effects may also be modeled nonparametrically. See Section 9.2.4 for an example.

For clustered data, an SLM model assumes that
\[
y_{ij} = s_{ij}^T\beta + \sum_{k=1}^r \mathcal{L}_{kij}f_k + z_{ij}^Tb_i + \epsilon_{ij}, \quad i = 1, \ldots, m; j = 1, \ldots, n_i, \tag{9.6}
\]
where \( y_{ij} \) is the \( j \)th observation in cluster \( i, \) and \( b_i \) are random effects for cluster \( i. \) Let \( n = \sum_{i=1}^m n_i, \ y_i = (y_{1i}, \ldots, y_{ni})^T, y = (y_1^T, \ldots, y_n^T)^T, \ S = (S_1^T, \ldots, S_m^T)^T, Z_i = (z_{1i}, \ldots, z_{ni})^T, Z = \text{diag}(Z_1, \ldots, Z_m), b = (b_1^T, \ldots, b_m^T)^T, \gamma(f) = (\sum_{k=1}^r \mathcal{L}_{k1}f_k, \ldots, \sum_{k=1}^r \mathcal{L}_{kn}f_k)^T, \) and \( \epsilon = (\epsilon_1^T, \ldots, \epsilon_m^T)^T. \) Then model (9.6) can be written in the same vector form as (9.5).

Similar SLM models may be constructed for multiple levels of grouping and other situations.

9.2.2 Estimation and Inference

For simplicity we present the estimation and inference procedures for the SLM model (9.4). The same methods apply to the SLM model (9.6) with a slight modification of notation.

We assume that the covariance matrices \( D \) and \( \Lambda \) depend on an unknown vector of covariance parameters \( \tau. \) Our goal is to estimate \( \beta, f, b, \tau, \) and \( \sigma^2. \) Assume that \( \mathcal{H}_k = \mathcal{H}_{k0} \oplus \mathcal{H}_{k1}, \) where \( \mathcal{H}_{k0} = \text{span}\{\phi_1, \ldots, \phi_{p_{k0}}\} \) and \( \mathcal{H}_{k1} \) is an RKHS with RK \( R_{k1}. \) Let \( \eta(\beta, f) = S\beta + \gamma(f) \) and \( W^{-1} = ZDZ^T + \Lambda. \) The marginal distribution of \( y \) is \( y \sim N(\eta(\beta, f), \sigma^2W^{-1}). \) For fixed \( \tau, \) we estimate \( \beta \) and \( f \) as minimizers of the PWLS (penalized weighted least squares)
\[
\frac{1}{n}(y - \eta(\beta, f))^TW(y - \eta(\beta, f)) + \lambda \sum_{k=1}^r \theta_k^{-1}\|P_{k1}f_k\|^2, \tag{9.7}
\]
where \( P_{k1} \) is the projection operator onto \( \mathcal{H}_{k1} \) in \( \mathcal{H}_k \), and \( \lambda_{k}^{-1} \) are smoothing parameters. Note that the PWLS (9.7) has the same form as (8.5). Therefore, the results in Section 8.2.2 hold for the SLM models. In particular,

\[
\hat{f}_k = \sum_{\nu=1}^{p_k} d_{k\nu} \phi_{k\nu} + \theta_k \sum_{i=1}^{n} c_i \xi_{ki}, \quad k = 1, \ldots, r, \tag{9.8}
\]

where \( \xi_{ki}(x) = \mathcal{L}_{ki}(z) R_{k1}(x, z) \).

For \( k = 1, \ldots, r \), let \( d_k = (d_{k1}, \ldots, d_{kp_k})^T \), \( T_k = \{ \mathcal{L}_{ki} \phi_{k\nu} \}_{\nu=1}^{p_k} \), and \( \Sigma_k = \{ \mathcal{L}_{ki} \mathcal{L}_{kj} R_{k1} \}_{i,j=1}^{n} \). Let \( c = (c_1, \ldots, c_n)^T \), \( d = (d_1^T, \ldots, d_r^T)^T \), \( \alpha = (\beta^T, d^T)^T \), \( T = (T_1, \ldots, T_r) \), \( X = (S \ T) \), \( \theta = (\theta_1, \ldots, \theta_r) \), and \( \Sigma_\theta = \sum_{k=1}^{r} \theta_k \Sigma_k \). We have \( \mathcal{L}_k \hat{f}_k = \sum_{\nu=1}^{p_k} d_{k\nu} \mathcal{L}_{ki} \phi_{k\nu} + \theta_k \sum_{j=1}^{n} c_j \mathcal{L}_{kj} \xi_{kj} \) and \( \hat{f}_k = (\mathcal{L}_{k1} \hat{f}_k, \ldots, \mathcal{L}_{kn} \hat{f}_k)^T = T_k d_k + \theta_k \Sigma_k c \). Consequently,

\[
\gamma(f) = \sum_{k=1}^{r} (T_k d_k + \theta_k \Sigma_k c) = T d + \Sigma_\theta c
\]

and

\[
\eta(\beta, f) = S \beta + T d + \Sigma_\theta c = X \alpha + \Sigma_\theta c.
\]

Furthermore,

\[
\sum_{k=1}^{r} \theta_k^{-1} \| P_{k1} \hat{f}_k \|^2 = \sum_{k=1}^{r} \theta_k c^T \Sigma_k c = c^T \Sigma_\theta c.
\]

Then the PWLS (9.7) reduces to

\[
(y - X \alpha - \Sigma_\theta c)^T W (y - X \alpha - \Sigma_\theta c) + n \lambda c^T \Sigma_\theta c. \tag{9.9}
\]

Differentiating (9.9) with respect to \( \alpha \) and \( c \), we have

\[
X^T WX \alpha + X^T W \Sigma_\theta c = X^T W y, \quad \Sigma_\theta W X \alpha + (\Sigma_\theta W \Sigma_\theta + n \lambda \Sigma_\theta) c = \Sigma_\theta W y. \tag{9.10}
\]

We estimate random effects by (Wang 1998a)

\[
\hat{b} = D Z^T W (y - X \alpha - \Sigma_\theta c). \tag{9.11}
\]

Henderson (hierarchical) likelihood is often used to justify the estimation of fixed and random effects in an LME model (Robinson 1991, Lee, Nelder and Pawitan 2006). We now show that the above PWLS estimates of \( \beta, f \), and \( b \) can also be derived from the following penalized
Henderson (hierarchical) likelihood of $y$ and $b$

\[(y - \eta(\beta, f) - Zb)^T \Lambda^{-1} (y - \eta(\beta, f) - Zb) + b^T D^{-1} b + n \lambda \sum_{k=1}^{r} \theta_k^{-1} \| P_{k1} f_k \|^2, \quad (9.12)\]

where, ignoring some constant terms, the first two components in (9.12) equal twice the negative logarithm of the joint density function of $y$. Again, the solution of $f$ in (9.12) can be represented by (9.8). Then the penalized Henderson (hierarchical) likelihood (9.12) reduces to

\[(y - X\alpha - \Sigma\theta c - Zb)^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c - Zb) + b^T D^{-1} b + n \lambda c^T \Sigma\theta c. \quad (9.13)\]

Differentiating (9.13) with respect to $\alpha$, $c$, and $b$, we have

\[X^T \Lambda^{-1} X\alpha + X^T \Lambda^{-1} \Sigma\theta c + X^T \Lambda^{-1} Zb = X^T \Lambda^{-1} y, \]

\[\Sigma\theta \Lambda^{-1} X\alpha + (\Sigma\theta \Lambda^{-1} \Sigma\theta + n \lambda \Sigma\theta) c + \Sigma\theta \Lambda^{-1} Zb = \Sigma\theta \Lambda^{-1} y, \quad (9.14)\]

\[Z^T \Lambda^{-1} X\alpha + Z^T \Lambda^{-1} \Sigma\theta c + (D^{-1} + Z^T \Lambda^{-1} Z)b = Z^T \Lambda^{-1} y. \]

It is easy to check that

\[W = \Lambda^{-1} - \Lambda^{-1} Z(Z^T \Lambda^{-1} Z + D^{-1})^{-1} Z^T \Lambda^{-1}. \quad (9.15)\]

Since $I = (DZ^T + \Lambda)W = DZ^T W + \Lambda W$, then

\[DZ^T W = I - \Lambda \{\Lambda^{-1} - \Lambda^{-1} Z(D^{-1} + Z^T \Lambda^{-1} Z)^{-1} Z^T \Lambda^{-1}\} \]

\[= Z(D^{-1} + Z^T \Lambda^{-1} Z)^{-1} Z^T \Lambda^{-1}. \quad (9.16)\]

From (9.11) and (9.16), we have

\[Zb = Z(D^{-1} + Z^T \Lambda^{-1} Z)^{-1} Z^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c). \quad (9.17)\]

From (9.15) and (9.17), the first equation in (9.10) is equivalent to

\[0 = X^T W X\alpha + X^T W \Sigma\theta c - X^T W y \]

\[= X^T \Lambda^{-1} X\alpha + X^T \Lambda^{-1} \Sigma\theta c - X^T \Lambda^{-1} y \]

\[+ X^T \Lambda^{-1} Z(D^{-1} + Z^T \Lambda^{-1} Z)^{-1} Z^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c) \]

\[= X^T \Lambda^{-1} X\alpha + X^T \Lambda^{-1} \Sigma\theta c - X^T \Lambda^{-1} y + X^T \Lambda^{-1} Zb, \]

which is the same as the first equation in (9.14). Similarly, the second equation in (9.10) is equivalent to the second equation in (9.14). Equation (9.11) is equivalent to

\[D^{-1} b = Z^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c) \]

\[- Z^T \Lambda^{-1} Z(D^{-1} + Z^T \Lambda^{-1} Z)^{-1} Z^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c) \]

\[= Z^T \Lambda^{-1} (y - X\alpha - \Sigma\theta c) - Z^T \Lambda^{-1} Zb. \]
which is the same as the third equation in (9.14). Therefore, the PWLS estimates of \( \beta, f, \) and \( b \) based on (9.7) and (9.11) can be regarded as the penalized Henderson (hierarchical) likelihood estimates.

Let \( Z_s = (I_n, \ldots, I_n) \), where \( I_n \) denotes an \( n \times n \) identity matrix. Consider the following LME model

\[
y = S\beta + Td + \sum_{k=1}^{r} u_k + Zb + \epsilon = X\alpha + Zs\theta + Zb + \epsilon,
\]

where \( \beta \) and \( d \) are fixed effects, \( \alpha = (\beta^T, d^T)^T \), \( u_k \) are random effects with \( u_k \sim \mathcal{N}(0, \sigma^2\theta_k\Sigma_k/n\lambda) \), \( u = (u_1^T, \ldots, u_r^T)^T \), \( b \) are random effects with \( b \sim \mathcal{N}(0, \sigma^2D) \), \( \epsilon \) are random errors with \( \epsilon \sim \mathcal{N}(0, \sigma^2I) \), and random effects and random errors are mutually independent. Let \( D_s = \text{diag}(\theta_1\Sigma_1, \ldots, \theta_r\Sigma_r) \) and \( b = (u^T, b^T)^T \). Write

\[
\sigma^{-2}\text{Cov}(\hat{b}) = \text{diag}((n\lambda)^{-1}D_s, D)
\]

\[
= \{I_{nr+q}\} \{\text{diag}(D_s, D)\} \{\text{diag}((n\lambda)^{-1}I_{nr}, I_{q})\}.
\]

Then equation (3.3) in Harville (1976) can be written as

\[
X^T\Lambda^{-1}X\alpha + X^T\Lambda^{-1}Z_sD_s\phi_1 + X^T\Lambda^{-1}ZD\phi
\]

\[
= X^T\Lambda^{-1}y,
\]

\[
D_sZ_s^T\Lambda^{-1}X\alpha + (n\lambda D_s + D_sZ_s^T\Lambda^{-1}Z_sD_s)\phi_1 + D_sZ_s^T\Lambda^{-1}ZD\phi
\]

\[
= D_sZ_s^T\Lambda^{-1}y,
\]

\[
DZ^T\Lambda^{-1}X\alpha + DZ^T\Lambda^{-1}ZsD_s\phi_1 + (D + DZ^T\Lambda^{-1}ZD)\phi
\]

\[
= DZ^T\Lambda^{-1}y.
\]

Suppose \( \alpha, c, \) and \( b \) are solutions to (9.14). Note that \( Z_sD_sZ_s^T = \Sigma_\theta \).

When \( \Sigma_\theta \) is invertible, multiplying \( D_sZ_s^T\Sigma_\theta^{-1} \) to both side of the second equation in (9.14), it is not difficult to see that \( \alpha, \phi_1 = Z_s^Tc, \) and \( \phi = D^{-1}b \) are solutions to (9.19). From Theorem 2 in Harville (1976), the linear system (9.19) is consistent, and the BLUP estimate of \( u \) is

\[
\hat{u} = D_s\phi_1 = D_sZ_s^Tc = (\theta_1c^T\Sigma_1, \ldots, \theta_rc^T\Sigma_r)^T.
\]

Therefore, the PWLS estimate of each component, \( \hat{u}_k = \theta_k\Sigma_kc, \) is a BLUP. When \( \Sigma_\theta \) is not invertible, consider \( Z_s\hat{u} = \sum_{k=1}^{r} u_k \) instead of each individual \( u_k \).

Letting \( \hat{b} = (u^T Z_s^T, b^T)^T \) and following the same arguments, it can be shown that the overall fit \( \Sigma_\theta c \) is a BLUP. Similarly, the estimate of \( b \) is also a BLUP.

We now discuss how to estimate smoothing parameters \( \lambda \) and \( \theta \) and variance–covariance parameters \( \sigma^2 \) and \( \tau \). Let the QR decomposition of
Consider the LME model (9.18) and orthogonal contrast \( w_1 = Q^T_2 y \). Then \( w_1 \sim N(0, \delta Q^T_2 M Q_2) \), where \( \delta = \sigma^2/n\lambda \) and \( M = \Sigma_\theta + n\lambda W^{-1} \). The restricted likelihood based on \( w_1 \) is given in (3.37) with a different \( M \) defined in this Section. Following the same arguments as in Section 3.6, we have the GML criterion for \( \lambda, \theta \) and \( \tau \) as

\[
GML(\lambda, \theta, \tau) = \frac{w_1^T(Q^T_2 M Q_2)^{-1} w_1}{\{\text{det}(Q^T_2 M Q_2)^{-1}\}^{n-q_1-p}}, \tag{9.20}
\]

where \( p = \sum_{k=1}^r p_k \). Similar to (3.41), the REML (GML) estimate of \( \sigma^2 \) is

\[
\hat{\sigma}^2 = \frac{n\lambda w_1^T(Q^T_2 \hat{M} Q_2)^{-1} w_1}{n - q_1 - p}, \tag{9.21}
\]

where \( \hat{M} = \Sigma_\theta + n\lambda \hat{W}^{-1} \), and \( \hat{W}^{-1} \) is the estimate of \( W^{-1} \) with \( \tau \) being replaced by \( \hat{\tau} \).

For clustered data, the leaving-out-one-cluster approach presented in Section 5.2.2 may also be used to estimate the smoothing and variance-covariance parameters.

The SLM model (9.4) reduces to the semiparametric linear regression model (8.4) when the random effects are combined with random errors. Therefore, the methods described in Section 8.2.2 can be used to draw inference about \( \beta \) and \( f \). Specifically, posterior means and standard deviations can be calculated using formulae (8.17) and (8.18) with \( W^{-1} = ZDZ^T + \Lambda \) fixed at its estimate. Bayesian confidence intervals for the overall functions and their components can then be constructed as in Section 8.2.2. Covariances for random effects can be computed using Theorem 1 in Wang (1998a). The bootstrap method may also be used to construct confidence intervals.

### 9.2.3 The slm Function

The connections between SLM models and LME models suggest a relatively simple approach to fitting SLM models using existing software for LME models. Specifically, for \( k = 1, \ldots, r \), let \( \Sigma_k = Z_{sk}Z^T_{sk} \) be the Cholesky decomposition, where \( Z_{sk} \) is a \( n \times m_k \) matrix with \( m_k = \text{rank}(\Sigma_k) \). Consider the following LME model

\[
y = S\beta + Td + \sum_{k=1}^r Z_{sk}b_{sk} + Zb + \epsilon, \tag{9.22}
\]
where $\beta$ and $d$ are fixed effects, $b_{sk}$ are random effects with $b_{sk} \sim N(0, \sigma^2 \theta_k I_{m_k} / n\lambda)$, $b$ are random effects with $b \sim N(0, \sigma^2 D)$, $\epsilon$ are random errors with $\epsilon \sim N(0, \sigma^2 \Lambda)$, and random effects and random errors are mutually independent. Following the same arguments in Section 9.2.2, it can be shown that the PWLS estimates of parameters and nonparametric functions in the SLM model (9.5) correspond to the BLUP estimates in the LME model (9.22). Furthermore, the GML estimates of smoothing and covariance parameters in (9.5) correspond to the REML estimates of covariance parameters in (9.22). Therefore, the PWLS estimates of $\beta$ and $f$, and GML estimates of $\lambda$, $\theta$ and $\tau$ in (9.5), can be calculated by fitting the LME model (9.22) with covariance parameters calculated by the REML method. This approach is implemented by the slm function in the assist package where the LME model was fitted using the lme function in the nlme library.

A typical call to the slm function is

\[ \text{slm(formula, rk, random)} \]

where formula and rk serve the same purposes as those in the ssr function. Combined, they specify the fixed effects. The random argument specifies the random effects the same way as in lme. An object of slm class is returned. The generic function summary can be applied to extract further information. Predictions on different levels of random effects can be computed using the predict function where the nonparametric functions are treated as part of fixed effects. Posterior means and standard deviations for $\beta$ and $f$ can be computed using the intervals function. Examples can be found in Section 9.4.

### 9.2.4 SS ANOVA Decomposition

We have shown how to build multiple regression models using SS ANOVA decompositions in Chapter 4. The resulting SS ANOVA models have certain modular structures that parallel the classical ANOVA decompositions. In this section we show how to construct similar SS ANOVA decompositions with modular structures that parallel the classical mixed models. We illustrate how to construct SS ANOVA decompositions through two examples. More examples of SS ANOVA decompositions involving random effects can be found in Wang (1998a), Wang and Wahba (1998), and Section 9.4.3. As a general approach, the SS ANOVA decomposition may be employed to build mixed-effects models for other situations.

It is instructive to see how the classical two-way mixed model (9.1) can be derived via an SS ANOVA decomposition. In general, the factor B is considered random since the levels of the factor are chosen at random...
from a well-defined population of all factor levels. It is of interest to draw an inference about the general population using information from these observed (chosen) levels. Let $X_1 = \{1, \ldots, a\}$ be the domain of factor A, and $X_2$ be the population from which the levels of the random factor B are drawn. Assume the following model

$$y_{iwk} = f(i, w) + \epsilon_{iwk}, \quad i \in X_1, \quad w \in X_2, \quad k = 1, \ldots, m, \quad (9.23)$$

where $f(i, w)$ is a random variable since $w$ is a random sample from $X_2$. $f(i, j)$ for $j = 1, \ldots, b$ are realizations of the true mean function defined on $X_1 \times X_2$. Let $P$ be the sampling distribution on $X_2$. Define averaging operators $A^{(1)}_1$ on $X_1$ and $A^{(2)}_2$ on $X_2$ as

$$A^{(1)}_1 f = \frac{1}{a} \sum_{i=1}^{a} f(i, \cdot),$$

$$A^{(2)}_2 f = \int_{X_2} f(\cdot, w) dP.$$ $A^{(2)}_1$ computes population average with respect to the sampling distribution. Let $A^{(1)}_2 = I - A^{(1)}_1$ and $A^{(2)}_2 = I - A^{(2)}_1$. An SS ANOVA decomposition can be defined as

$$f = \{A^{(1)}_1 + A^{(1)}_2\}\{A^{(2)}_1 + A^{(2)}_2\} f$$

$$= A^{(1)}_1 A^{(2)}_1 f + A^{(1)}_1 A^{(2)}_2 f + A^{(1)}_2 A^{(2)}_1 f + A^{(1)}_2 A^{(2)}_2 f$$

$$\triangleq \mu + \alpha_i + \beta_w + (\alpha\beta)_{iw}.$$ Therefore, the SS ANOVA decomposition leads to the same structure as the classical two-way mixed model (9.1).

Next we discuss how to derive the SS ANOVA decomposition for repeated measures data. As in Section 9.1, suppose we have repeated measurements on a response variable over a period of time or a sequence of doses from multiple individuals. Suppose that individuals are selected at random from a well-defined population $X_1$. Without loss of generality, denote the time period or dose range as $X_2 = [0, 1]$. The linear growth curve model (9.2) assumes that responses across time or doses for each individual can be well described by a simple straight line, which may be too restrictive for some applications. Assume the following model

$$y_{wj} = f(w, x_{wj}) + \epsilon_{wj}, \quad w \in X_1; \quad x_{wj} \in X_2, \quad j = 1, \ldots, n_w, \quad (9.24)$$

where $f(w, x_{wj})$ are random variables since $w$ are random samples from $X_1$. $f(i, x_{ij})$, $i = 1, \ldots, m$, $j = 1, \ldots, n_i$ are realizations of the true mean functions defined on $X_1 \times X_2$. Suppose we want to model the
mean function nonparametrically using the cubic spline space $W_2^2[0, 1]$ under the construction in Section 2.2. Let $P$ be the sampling distribution on $X_1$. Define averaging operators

$$\mathcal{A}_1^{(1)} f = \int_{X_1} f(w, \cdot) dP,$$

$$\mathcal{A}_1^{(2)} f = f(\cdot, 0),$$

$$\mathcal{A}_2^{(2)} f = f'(\cdot, 0)x.$$

Let $\mathcal{A}_2^{(1)} = I - \mathcal{A}_1^{(1)}$ and $\mathcal{A}_3^{(2)} = I - \mathcal{A}_1^{(2)} - \mathcal{A}_2^{(2)}$. Then

$$f = \{\mathcal{A}_1^{(1)} + \mathcal{A}_2^{(1)}\} \{\mathcal{A}_1^{(2)} + \mathcal{A}_2^{(2)} + \mathcal{A}_3^{(2)}\} f$$

$$= \mathcal{A}_1^{(1)} \mathcal{A}_2^{(2)} f + \mathcal{A}_1^{(1)} \mathcal{A}_2^{(2)} f + \mathcal{A}_1^{(1)} \mathcal{A}_3^{(2)} f +$$

$$+ \mathcal{A}_2^{(1)} \mathcal{A}_1^{(2)} f + \mathcal{A}_2^{(1)} \mathcal{A}_2^{(2)} f + \mathcal{A}_3^{(1)} \mathcal{A}_3^{(2)} f$$

$$= \beta_1 + \beta_2 x + f_2(x) + b_{1w} + b_{2w} x + f_{1,2}(w, x),$$

(9.25)

where the first three terms are fixed effects representing the population mean function, and the last three terms are random effects representing the departure of individual $w$ from the population mean function. Since both the first and the last three terms are orthogonal components in $W_2^2[0, 1]$, then both the population mean function and the individual departure are modeled by cubic splines.

Based on the SS ANOVA decomposition (9.25), we may consider the following model for observed data

$$y_{ij} = \beta_1 + \beta_2 x_{ij} + f_2(x_{ij}) + b_{1i} + b_{2i} x_{ij} + f_{1,2}(i, x_{ij}) + \epsilon_{ij},$$

$$i = 1, \ldots, m; \quad j = 1, \ldots, n_i.$$

Let $b_i = (b_{1i}, b_{2i})^T$ and assume that $b_i \overset{iid}{\sim} N(0, \sigma^2 D)$. One possible model for the nonparametric random effects $f_{1,2}$ is to assume that $f_{1,2}(i, x)$ is a stochastic process on $[0, 1]$ with mean zero and covariance function $\sigma_1^2 R_1(x, y)$, where $R_1(x, y)$ is the RK of $W_2^2[0, 1] \ominus \{1, x\}$ defined in (2.4). It is obvious that the linear growth curve model (9.2) is a special case of model (9.25) with $f_2 = 0$ and $\sigma_1^2 = 0$. 
9.3 Semiparametric Nonlinear Mixed-Effects Models

9.3.1 The Model

Nonlinear mixed-effects (NLME) models extend LME models by allowing the regression function to depend on fixed and random effects through a nonlinear function. Consider the following NLME model proposed by Lindstrom and Bates (1990) for clustered data:

\[ y_{ij} = \psi(\phi_{ij}; x_{ij}) + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i, \]

\[ \phi_{ij} = S_{ij}\beta + Z_{ij}b_i, \quad b_i \overset{iid}{\sim} N(0, \sigma^2 D), \] (9.26)

where \( m \) is the number of clusters, \( n_i \) is the number of observations from the \( i \)-th cluster, \( y_{ij} \) is the \( j \)-th observation in cluster \( i \), \( \psi \) is a known function of a covariate \( x \), \( \phi_{ij} \) is a \( q \)-vector of parameters, \( \epsilon_{ij} \) are random errors, \( S_{ij} \) and \( Z_{ij} \) are design matrices for fixed and random effects respectively, \( \beta \) is a \( q_1 \)-vector of population parameters (fixed effects), and \( b_i \) is a \( q_2 \)-vector of random effects for cluster \( i \). Let \( \epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{in_i})^T \). We assume that \( \epsilon_i \sim N(0, \sigma^2 \Lambda_i) \), \( b_i \) and \( \epsilon_i \) are mutually independent, and observations from different clusters are independent.

The first-stage model in (9.26) relates the conditional mean of the response variable to the covariate \( x \) and parameters \( \phi_{ij} \). The second-stage model relates parameters \( \phi_{ij} \) to fixed and random effects. Covariate effects can be incorporated into the second-stage model.

As an extension of the NLME model, Ke and Wang (2001) proposed the following class of semiparametric nonlinear mixed-effects (SNM) models:

\[ y_{ij} = N_{ij}(\phi_{ij}; f) + \epsilon_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n_i, \]

\[ \phi_{ij} = S_{ij}\beta + Z_{ij}b_i, \quad b_i \overset{iid}{\sim} N(0, \sigma^2 D), \] (9.27)

where \( \phi_{ij} \) is a \( q \)-vector of parameters, \( \beta \) is a \( q_1 \)-vector of fixed effects, \( b_i \) is a \( q_2 \)-vector of random effects for cluster \( i \), \( f = (f_1, \ldots, f_r) \) are unknown functions, \( f_k \) belongs to an RKHS \( \mathcal{H}_k \) on an arbitrary domain \( D_k \) for \( k = 1, \ldots, r \), and \( N_{ij} \) are known nonlinear functionals on \( \mathbb{R}^q \times \mathcal{H}_1 \times \cdots \times \mathcal{H}_r \).

As the NLME model, we assume that \( \epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{in_i})^T \sim N(0, \sigma^2 \Lambda_i) \), \( b_i \) and \( \epsilon_i \) are mutually independent, and observations from different clusters are independent.

It is clear that the SNM model (9.27) is an extension of the SNR model (8.30) with an additional mixed-effects second-stage model. Similar to the SNR model, certain constraints may be required to make an
SNM model identifiable, and often these constraints can be achieved by removing certain components from the model spaces for parameters and \( f \). The SLM model (9.28) is a special case when \( \mathcal{N} \) is linear in both \( \phi \) and \( f \).

Let \( n = \sum_{i=1}^{m} n_i, \ y_i = (y_{i1}, \ldots, y_{in_i})^T, \ y = (y_1^T, \ldots, y_m^T)^T, \ \phi = (\phi_{i1}, \ldots, \phi_{in_i})^T, \ \phi = (\phi_1^T, \ldots, \phi_m^T)^T, \ \eta_i(\phi_i, f) = (N_{ii}(\phi_i, f), \ldots, \mathcal{N}_{in_i}(\phi_{in_i}, f))^T, \ \eta(\phi, f) = (\eta_1^T(\phi_1, f), \ldots, \eta_m^T(\phi_m, f))^T, \ e = (e_1^T, \ldots, e_m^T)^T, b = (b_1^T, \ldots, b_m^T)^T, \Lambda = \text{diag}(\Lambda_1, \ldots, \Lambda_m), S = (S_{11}, \ldots, S_{1m_1}, \ldots, S_{m_1}, \ldots, S_{m_m})^T, Z_i = (Z_{i1}, \ldots, Z_{i_m})^T, Z = \text{diag}(Z_1, \ldots, Z_m), \) and \( D = \text{diag}(D, \ldots, D) \). Then model (9.27) can be written in the vector form

\[
\begin{align*}
\begin{align*}
y &= \eta(\phi, f) + e, \quad e \sim N(0, \sigma^2\Lambda), \\
\phi &= S\beta + Zb, \quad b \sim N(0, \sigma^2D).
\end{align*}
\tag{9.28}
\end{align*}
\]

Note that model (9.28) is more general than (9.27) in the sense that other SNM models may also be written in this form. We will discuss estimation and inference procedures for the general model (9.28).

### 9.3.2 Estimation and Inference

Suppose \( \mathcal{H}_k = \mathcal{H}_{k0} \oplus \mathcal{H}_{k1} \), where \( \mathcal{H}_{k0} = \text{span}\{\phi_{k1}, \ldots, \phi_{k_p}\} \) and \( \mathcal{H}_{k1} \) is an RKHS with RK \( R_{k1} \). Assume that \( D \) and \( \Lambda \) depend on an unknown parameter vector \( \tau \). We need to estimate \( \beta, f, \tau, \sigma^2, \) and \( b \). The marginal likelihood based on model (9.28)

\[
L(\beta, f, \tau, \sigma^2) = (2\pi\sigma^2)^{-\frac{m+n}{2}} |D|^{-\frac{1}{2}} |\Lambda|^{-\frac{1}{2}} \int \exp \left\{ -\frac{1}{\sigma^2} g(b) \right\} db,
\]

where

\[
g(b) = \frac{1}{2} \left\{ (y - \eta(S\beta + Zb, f))^T \Lambda^{-1} (y - \eta(S\beta + Zb, f)) + b^T D^{-1} b \right\}.
\]

For fixed \( \tau \) and \( \sigma^2 \), we estimate \( \beta \) and \( f \) as the minimizers of the following penalized likelihood (PL)

\[
l(\beta, f, \tau, \sigma^2) + \frac{n\lambda}{\sigma^2} \sum_{k=1}^{r} \theta_k^{-1} ||P_{k1}f_k||^2,
\tag{9.29}
\]

where \( l(\beta, f, \tau, \sigma^2) = -2 \log L(\beta, f, \tau, \sigma^2), P_{k1} \) is the projection operator onto \( \mathcal{H}_{k1} \) in \( \mathcal{H}_k \), and \( \lambda \theta_k^{-1} \) are smoothing parameters.

The integral in the marginal likelihood is usually intractable because \( \eta \) may depend on \( b \) nonlinearly. We now derive an approximation to the
Since \( \tilde{\tau} \) estimation of \( \tilde{f} \) minimizers of the following penalized Henderson (hierarchical) likelihood

\[ G = \partial \eta(S\beta + Zb, f)/\partial b^T \]

and \( \tilde{b} \) be the solution to

\[ \frac{\partial g(b)}{\partial b} = -G^T \Lambda^{-1}(y - \eta(S\beta + Zb, f)) + D^{-1}b = 0. \tag{9.30} \]

Approximating the Hessian by \( \partial^2 g(b)/\partial b \partial b^T \approx G^T \Lambda^{-1}G + D^{-1} \) and applying the Laplace method for integral approximation, the function \( l \) can be approximated by

\[ \tilde{l}(\beta, f, \tau, \sigma^2) = n \log 2\pi\sigma^2 + \log |\Lambda| + \log |U + G^T \Lambda^{-1}GD| \]

\[ + \frac{1}{\sigma^2} (y - \eta(S\beta + Zb, f))\Lambda^{-1}(y - \eta(S\beta + Zb, f)) + \frac{1}{\sigma^2} b^T D^{-1}b. \tag{9.31} \]

where \( \tilde{G} = G|_{b = \tilde{b}} \). Replacing \( l \) by \( \tilde{l} \), ignoring the dependence of \( \tilde{G} \) on \( \beta \) and \( f \), and dropping constant terms, the PL (9.29) reduces to

\[ (y - \eta(S\beta + Zb, f))\Lambda^{-1}(y - \eta(S\beta + Zb, f)) + b^T D^{-1}b + n\lambda \sum_{k=1}^{r} \theta_k^{-1} \| P_k f_k \|^2. \tag{9.32} \]

It is not difficult to see that estimating \( b \) by equation (9.30), and \( \beta \) and \( f \) by equation (9.32), is equivalent to estimating \( b, \beta, \) and \( f \) jointly as minimizers of the following penalized Henderson (hierarchical) likelihood

\[ (y - \eta(S\beta + Zb, f))\Lambda^{-1}(y - \eta(S\beta + Zb, f)) + b^T D^{-1}b + n\lambda \sum_{k=1}^{r} \theta_k^{-1} \| P_k f_k \|^2. \tag{9.33} \]

Denote the estimates of \( \beta \) and \( f \) as \( \tilde{\beta} \) and \( \tilde{f} \). We now discuss the estimation of \( \tau \) and \( \sigma^2 \) with \( \beta, f, \) and \( b \) fixed at \( \tilde{\beta}, \tilde{f}, \) and \( \tilde{b} \). Let \( \tilde{W}^{-1} = \Lambda + \tilde{G} \tilde{D} \tilde{G}^T, \tilde{\eta} = \eta(Sb + Zb, f), \) and \( U = (D^{-1} + \tilde{G}^T \Lambda^{-1} \tilde{G})^{-1} \). Since \( \tilde{W} = \Lambda^{-1} - \Lambda^{-1} \tilde{G} \tilde{U} \tilde{G}^T \Lambda^{-1} \) and \( \tilde{G}^T \Lambda^{-1}(y - \tilde{\eta}) = D^{-1}b, \) then

\[ (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \tilde{W}(y - \tilde{\eta} + \tilde{G} \tilde{b}) = (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \Lambda^{-1}(y - \tilde{\eta} + \tilde{G} \tilde{b}) - (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \Lambda^{-1} \tilde{G} \tilde{U} \tilde{G}^T \Lambda^{-1}(y - \tilde{\eta} + \tilde{G} \tilde{b}) \]

\[ = (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \Lambda^{-1}(y - \tilde{\eta} + \tilde{G} \tilde{b}) \]

\[ = (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \Lambda^{-1}(y - \tilde{\eta} + \tilde{G} \tilde{b}) \]

\[ = (y - \tilde{\eta} + \tilde{G} \tilde{b})^T \Lambda^{-1}(y - \tilde{\eta} + \tilde{G} \tilde{b}) \]

\[ = (y - \tilde{\eta})^T \Lambda^{-1}(y - \tilde{\eta}) + \tilde{b}^T \tilde{G} \Lambda^{-1}(y - \tilde{\eta}) \]

\[ = (y - \tilde{\eta})^T \Lambda^{-1}(y - \tilde{\eta}) + \tilde{b}^T D^{-1} \tilde{b}. \]
Note that, based on Theorem 18.1.1 in Harville (1997), 
\[ |\tilde{W}^{-1}| = |\Lambda + \tilde{G}D\tilde{G}^T| = |\Lambda||I + \tilde{G}^T\Lambda^{-1}\tilde{G}D| . \]
Then we can reexpress \( \tilde{l} \) in (9.31) as
\[ \tilde{l}(\beta, f, \tau, \sigma^2) = n \log 2\pi + \log |\tilde{\sigma}^2\tilde{W}^{-1}| + \frac{1}{\tilde{\sigma}^2}\tilde{e}^T\tilde{W}\tilde{e}, \quad (9.34) \]
where \( e = y - \eta(S\beta + Zb, f) + \tilde{G}b . \) Plugging-in estimates of \( \beta \) and \( f \) in (9.34), profiling with respect to \( \sigma^2 \), and dropping constant terms, we estimate \( \tau \) as minimizers of the following approximate negative log-likelihood
\[ \log |\tilde{W}^{-1}| + \log(\tilde{e}^T\tilde{W}\tilde{e}) , \quad (9.35) \]
where \( \tilde{e} = y - \eta(S\tilde{\beta} + Z\tilde{b}, \tilde{f}) + \tilde{G}\tilde{b} . \)

The resulting estimates of \( \tau \) are denoted as \( \tilde{\tau} . \) To account for the loss of degrees of freedom for estimating \( \beta \) and \( f \), we estimate \( \sigma^2 \) by
\[ \tilde{\sigma}^2 = \frac{\tilde{e}^T\tilde{W}(\tilde{\tau})\tilde{e}}{n - q_1 - df(f) } , \quad (9.36) \]
where \( q_1 \) is the dimension of \( \beta \), and \( df(f) \) is a properly defined degree of freedom for estimating \( f \). As in Section 8.3.3, we set \( df(f) = tr(H^+) \), where \( H^+ \) is the hat matrix computed at convergence.

Assume priors (8.12) for \( f_k, k = 1, \ldots, r \). Usually the posterior distribution does not have a closed form. Expanding \( \eta \) at \( \tilde{b} \), we consider the following approximate Bayes model
\[ y \approx \eta(S\tilde{\beta} + Z\tilde{b}, f) - \tilde{G}\tilde{b} + \tilde{G}b + \epsilon , \quad (9.37) \]
where priors for \( f \) are given in (8.12), and priors for \( \beta \) are \( N(0, \kappa I_{q_1}) \). Ignoring the dependence of \( \tilde{G} \) on \( \beta \) and \( f \) and combining random effects with random errors, model (9.37) reduces to an SNR model. Then methods discussed in Section 8.3.3 can be used to draw an inference about \( \beta, \tau, \) and \( f \). In particular, approximate Bayesian confidence intervals can be constructed for \( f \). The bootstrap approach may also be used to draw inference about \( \beta, \tau, \) and \( f \).

### 9.3.3 Implementation and the snm Function

Since \( f \) may interact with \( \beta \) and \( b \) in a complicated way, it is usually impossible to solve (9.33) and (9.35) directly. The following iterative procedure will be used.

**Algorithm for SNM models**

1. **Initialize**: Set initial values for \( \beta, f, b, \) and \( \tau \).
2. **Cycle:** Alternate between (a), (b), and (c) until convergence:

(a) Conditional on current estimates of $\beta$, $b$, and $\tau$, update $f$ by solving (9.33).

(b) Conditional on current estimates of $f$ and $\tau$, update $\beta$ and $b$ by solving (9.33).

(c) Conditional on current estimates of $f$, $\beta$, and $b$, update $\tau$ by solving (9.35).

Note that step (b) corresponds to the pseudo-data step, and step (c) corresponds to part of the LME step in the Lindstrom–Bates algorithm (Lindstrom and Bates 1990). Consequently, steps (b) and (c) can be implemented by the `nlme` function in the `nlme` library. We now discuss the implementation of step (a). Note that $\beta$, $b$, and $\tau$ are fixed as the current estimates, say, $\beta^-$, $b^-$ and $\tau^-$. To update $f$ at step (a), we need to fit the first-stage model

$$ y = \eta(\phi_-, f) + \epsilon, \quad \epsilon \sim N(0, \sigma^2 \Lambda^-), $$

(9.38)

where $\phi_-$ is a function involving evaluational functionals. Then model (9.27) can be rewritten as

$$ y_{ij} = \alpha(\phi_-; x_{ij}) + \sum_{k=1}^r \delta_k(\phi_-; x_{ij}) f_k(\gamma_k(\phi_-; x_{ij})) + \epsilon_{ij}, $$

(9.39)

which has the same form as the general SEMOR (self-modeling nonlinear regression) model (8.32). Since $\phi_-$ and $\Lambda_-$ are fixed, the procedure described in Section 8.2.2 can be used to update $f$. In particular, the smoothing parameters may be estimated by the UBR, GCV or GML method at this step. When $\eta$ is nonlinear in $f$, the EGN (extended Gauss–Newton) procedure in Section 8.3.3 can be used to update $f$.

The `snm` function in the `assist` library implements the algorithm when $N_{ij}$ in (9.27) are linear in $f$ and involve evaluational functionals. A typical call to the `snm` function is

```
snm(formula, func, fixed, random, start)
```

where the arguments `formula` and `func` serve the same purposes as those in the `nnr` function and are specified in the same manner. Following syntax in `nlme`, the `fixed` and `random` arguments specify the fixed, and random effects models in the second-stage model. The option `start` specifies initial values for all parameters in the fixed effects. An object of `snm` class is returned. The generic function `summary` can be applied
to extract further information. Predictions at the population level can be computed using the \texttt{predict} function. At convergence, approximate Bayesian confidence intervals can be constructed as in Section 8.3.3. Posterior means and standard deviations for $f$ can be computed using the \texttt{intervals} function. Examples can be found in Section 9.4.

9.4 Examples

9.4.1 Ozone in Arosa — Revisit

We have fitted SS ANOVA models in Section 4.9.2 and trigonometric spline models with heterogeneous and correlated errors in Section 5.4.2 to the Arosa data. An alternative approach is to consider observations as a long time series. Define a time variable as $t = (\text{month} - 0.5)/12 + \text{year} - 1$ with domain $[0,b]$, where $b = 45.46$ is the maximum value of $t$. Denote $\{(y_i, t_i), i = 1, \ldots, 518\}$ as observations on the response variable thick and time $t$. Consider the following semiparametric linear regression model

$$y_i = \beta_1 + \beta_2 \sin(2\pi t_i) + \beta_3 \cos(2\pi t_i) + \beta_4 t_i + f(t_i) + \epsilon_i, \quad (9.40)$$

where $\sin(2\pi t)$ and $\cos(2\pi t)$ model the seasonal trend, $\beta_4 t + f(t)$ models the long-term trend, and $\epsilon_i$ are random errors. Note that the space for the parametric component, $\mathcal{H}_0 = \{1, t, \cos 2\pi t, \sin 2\pi t\}$, is the same as the null space of the linear-periodic spline defined in Section 2.11.4 with $\tau = 2\pi$. Therefore, we model the nonparametric function $f$ using the model space $W^4_{2}[0,b] \ominus \mathcal{H}_0$ (see Section 2.11.4 for more details).

Observations close in time are likely to be correlated. We consider the exponential correlation structure with a nugget effect. Specifically, write $\epsilon_i = \epsilon(t_i)$ and assume that $\epsilon(t)$ is a zero-mean stochastic process with correlation structure

$$\text{Cov}(\epsilon(s), \epsilon(t)) = \begin{cases} \sigma^2(1 - c_0) \exp(-|s - t|/\rho), & s \neq t, \\ \sigma^2, & s = t, \end{cases} \quad (9.41)$$

where $\rho$ is the range parameter and $c_0$ is the nugget effect.

In the following we fit model (9.40) with correlation structure (9.41) and compute the overall fit as well as estimates of the seasonal and long-term trends:

```r
> Arosa$t <- (Arosa$month-0.5)/12+Arosa$year-1
> arosa.ls.fit3 <- ssr(thick~t+sin(2*pi*t)+cos(2*pi*t),
```
rk=lspline(2*pi*t,type='linSinCos'), spar='m',
corr=corExp(form=~t,nugget=T), data=Arosa)
> summary(arosa.ls.fit3)

GML estimate(s) of smoothing parameter(s) : 19461.83
Equivalent Degrees of Freedom (DF):  4.529238
Estimate of sigma:  17.32503
Correlation structure of class corExp representing
range     nugget
 0.3529361  0.6366844

> tm <- matrix(c(1,1,1,1,0,1,1,0,0,1,0,1,0,0,1), ncol=5,
byrow=T)
> grid3 <- data.frame(t=seq(0,max(Arosa$t)+0.001,len=500))
> arosa.ls.fit3.p <- predict(arosa.ls.fit3, newdata=grid3,
terms=tm)

Figure 9.1 shows the overall fit as well as estimates of the seasonal and
long-term trends. We can see that the long-term trend is not significantly
different from zero.

Sometimes it is desirable to use a stochastic process to model the
autocorrelation and regard this process as part of the signal. Then we
need to separate this process from other errors and predict it at desired
points. Specifically, consider the following SLM model

\[ y_i = \beta_1 + \beta_2 \sin(2\pi t_i) + \beta_3 \cos(2\pi t_i) + \beta_4 t_i + f(t_i) + u(t_i) + \epsilon_i, \quad (9.42) \]

where \( u(t) \) is a stochastic process independent of \( \epsilon_i \) with mean zero and
\( \text{Cov}(u(s), u(t)) = \sigma_1^2 \exp(-|s-t|/\rho) \) with range parameter \( \rho \).

Let \( t = (t_1, \ldots, t_{518})^T \) be the vector of design points for the variable \( t \).
Let \( \mathbf{u} = (u(t_1), \ldots, u(t_{518}))^T \) be the vector of the \( u \) process evaluated at
design points. Then \( \mathbf{u} \) are random effects, and \( \mathbf{u} \sim N(0, \sigma_1^2 D) \), where \( D \)
is a covariance matrix with the \((i,j)\)th element equals \( \exp(-|t_i - t_j|/\rho) \).
The SLM model (9.42) cannot be fitted directly using the \texttt{slm} function
since \( D \) depends on the unknown range parameter \( \rho \) nonlinearly. We fit
model (9.42) in two steps. We first regard \( \mathbf{u} \) as part of random errors and
estimate the range parameter. This is accomplished in \texttt{arosa.ls.fit3}.
Then we calculate the estimate of \( D \) without the nugget effect and regard it as the true covariance matrix. We calculate the Cholesky decomposition of \( D \) as \( D = ZZ^T \) and transform the random effects \( \mathbf{u} = Z\mathbf{b} \),
where \( \mathbf{b} \sim N(0, \sigma_1^2 I) \). Then we fit the transformed SLM model and compute the overall fit, estimate of the seasonal trend, and estimate of the
long-term trend as follows:

\[ \texttt{> tau <- coef(arosa.ls.fit3$cor.est, F)} \]
are based on the fit to model (9.40) with correlation structure (9.41).

Estimates fit, (b) estimate of the seasonal trend, and (c) estimate of the long-term trend with 95% Bayesian confidence intervals (shaded region). Estimates are based on the fit to model (9.40) with correlation structure (9.41).

**FIGURE 9.1** Arosa data, plots of (a) observations and the overall fit, (b) estimate of the seasonal trend, and (c) estimate of the long-term trend with 95% Bayesian confidence intervals (shaded region). Estimates are based on the fit to model (9.40) with correlation structure (9.41).
> D <- corMatrix(Initialize(corExp(tau[1], form=~t), data=Arosa))

> Z <- chol.new(D)

> arosa.ls.fit4 <- slm(thick~t+sin(2*pi*t)+cos(2*pi*t),
    rk=lspline(2*pi*t,type='linSinCos'),
    random=list(pdIdent(~Z-1)), data=Arosa)

> arosa.ls.fit4.p <- intervals(arosa.ls.fit4, newdata=grid3, terms=tm)

where `chol.new` is a function in the `assist` library for Cholesky decomposition. Suppose we want to predict \( u \) on grid points and denote \( v \) as the vector of the \( u \) process evaluated at these grid points. Let \( R = \text{Cov}(v, u) \). Note that \( Z \) is a square invertible matrix since \( D \) is invertible. Then \( \hat{v} = R D^{-1} \hat{u} = RZ^{-T}\hat{b} \). We compute the prediction as follows:

> newdata <- data.frame(t=c(Arosa$t, grid3$t))

> RD <- corMatrix(Initialize(corExp(tau[1], form=~t), data=newdata))

> R <- RD[(length(Arosa$t)+1):length(newdata$t),
    1:length(Arosa$t)]

> b <- as.vector(arosa.ls.fit4$lme.obj$coef$random[[2]])

> u.new <- R%*%t(solve(Z))%*%b

Figure 9.2 shows the overall fit, estimate of the seasonal trend, estimate of the long-term trend, and prediction of \( u(t) \) (local stochastic trend). The bump during 1940 in Figure 4.10 shows up in the prediction of local stochastic trend.

### 9.4.2 Lake Acidity — Revisit

We have shown how to investigate geological location effect using an SS ANOVA model in Section 5.4.4. We now describe an alternative approach using random effects. We use the same notations defined in Section 5.4.4. Consider the following SLM model:

\[
\text{pH}(x_{1i}, x_{2i}) = f(x_{1i}) + \beta_1 x_{21i} + \beta_2 x_{22i} + u(x_{2i}) + \epsilon(x_{1i}, x_{2i}), \tag{9.43}
\]

where \( f \in W^2_2(\mathbb{R}) \), \( u(x_{2i}) \) is a spatial process, and \( \epsilon(x_{1i}, x_{2i}) \) are random errors independent of the spatial process. Model (9.43) separates the contribution of the spatial correlation from random errors and regards the spatial process as part of the signal. Assume that \( u(x_{2i}) \) is a zero-mean process independent of \( \epsilon(x_{1i}, x_{2i}) \) with an exponential correlation structure \( \text{Cov}(u(x_2), u(z_2)) = \sigma^2 \exp\{-d(x_{2i}, z_{2i})/\rho\} \) with range parameter \( \rho \), where \( d(x_{2i}, z_{2i}) \) represents the Euclidean distance.
FIGURE 9.2 Arosa data, plots of (a) observations and the overall fit, (b) estimate of the seasonal trend, (c) estimate of the long-term trend with 95% Bayesian confidence intervals (shaded region), and (d) prediction of local stochastic trend. Estimates are based on the fit to model (9.42).
Let \( \mathbf{u} \) be the vector of the \( u \) process evaluated at design points. Then \( \mathbf{u} \) are random effects and \( \mathbf{u} \sim N(0, \sigma^2 D) \), where the covariance matrix
\[
D = \{-d(x_{i2}, x_{j2})/\rho\}_{i,j=1}^n
\]
depends on the unknown parameter \( \rho \) nonlinearly. Therefore, again, we fit model (9.43) in two steps. We first regard \( \mathbf{u} \) as part of random errors, estimate the range parameter, and calculate the estimated covariance matrix without the nugget effect:

\[
\begin{align*}
&\text{temp <- ssr(ph~x1+x21+x22, rk=tp(x1), data=acid,} \\
&\text{corr=corExp(form=~x21+x22, nugget=T), spar=’m’)} \\
&\text{tau <- coef(temp$cor.est, F)} \\
&\text{D <- corMatrix(Initialize(corExp(tau[1],form=~x21+x22),} \\
&\text{data=acid))}
\end{align*}
\]

Consider the estimated \( D \) as the true covariance matrix. Then we calculate the Cholesky decomposition of \( D \) as \( D = ZZ^T \) and transform the random effects \( \mathbf{u} = Z\mathbf{b} \), where \( \mathbf{b} \sim N(0, \sigma_1^2 I) \). Now we are ready to fit the transformed SLM model:

\[
\begin{align*}
&\text{Z <- chol.new(D)} \\
&\text{acid.slm.fit <- slm(ph~x1+x21+x22, rk=tp(x1), data=acid,} \\
&\text{random=list(pdIdent(~Z-1)))}
\end{align*}
\]

We then calculate the estimated effect of calcium:

\[
\begin{align*}
&\text{grid1 <- data.frame(} \\
&\quad x1=seq(min(acid$x1),max(acid$x1),len=100),} \\
&\quad x21=min(acid$x21), x22=min(acid$x22)) \\
&\text{acid.slm.x1.p <- intervals(acid.slm.fit, newdata=grid1,} \\
&\quad terms=c(0,1,0,0,1))
\end{align*}
\]

Let \( \mathbf{v} \) be the vector of the \( u \) process evaluated at grid points at which we wish to predict the location effect. Let \( R = \text{Cov}(\mathbf{v}, \mathbf{u}) \). Then \( \hat{\mathbf{v}} = RD^{-1}\hat{\mathbf{u}} = RZ^{-T}\mathbf{b} \).

\[
\begin{align*}
&\text{grid2 <- expand.grid(} \\
&\quad x21=seq(min(acid$x21)-.001,max(acid$x21)+.001,len=20),} \\
&\quad x22=seq(min(acid$x22)-.001,max(acid$x22)+.001,len=20)) \\
&\text{newdata <- data.frame(z1=c(acid$x21,grid2$x21),} \\
&\quad z2=c(acid$x22,grid2$x22)) \\
&\text{RD <- corMatrix(Initialize(corExp(tau[1], form=~z1+z2),} \\
&\quad data=newdata)) \\
&\text{R <- RD[(length(acid$x21)+1):length(newdata$z1),} \\
&\quad 1:length(acid$x21)]} \\
&\text{b <- as.vector(acid.slm.fit$lme.obj$coef$random[[2]])} \\
&\text{u.new <- R%*%t(solve(Z))%*%b} \\
&\text{acid.slm.x2.p <- u.new+}
\end{align*}
\]
Figure 9.3 plots the estimated calcium ($x_1$) effect and prediction of the location ($x_2$) effect.

FIGURE 9.3 Lake acidity data, the left panel includes observations and the estimate of the calcium effect $f$ (the constant plus main effect of $x_1$), and the right panel includes prediction of the location effect $\hat{f}_{x_2} + \hat{u}(x_2)$.

9.4.3 Coronary Sinus Potassium in Dogs

The dog data set contains measurements of coronary sinus potassium concentration from dogs in four groups: control, extrinsic cardiac denervation three weeks prior to coronary occlusion, extrinsic cardiac denervation immediately prior to coronary occlusion, and bilateral thoracic sympathectomy and stellectomy three weeks prior to coronary occlusion. We are interested in (i) estimating the group (treatment) effects, (ii) estimating the group mean concentration as a function of time, and (iii) predicting response over time for each dog. There are two categorical covariates, group and dog, and a continuous covariate, time. We code the group factor as 1 to 4, and the observed dog factor as 1 to 36. Coronary sinus potassium concentrations for all dogs are shown in Figure 9.4.

Let $t$ be the time variable transformed into $[0, 1]$. We treat group and time as fixed factors. From the design, the dog factor is nested within the group factor. We treat dog as a random factor. For group $k$, denote
FIGURE 9.4 Dog data, coronary sinus potassium concentrations over time for each dog. Solid thick lines link within group average concentrations at each time point.

\[ y_{kwj} = f(k, w, t_j) + \epsilon_{kwj}, \quad k = 1, \ldots, 4; \ w \in B_k; \ t_j \in [0, 1], \] (9.44)

where \( y_{kwj} \) is the observed potassium concentration at time \( t_j \) from dog \( w \) in the population \( B_k \), \( f(k, w, t_j) \) is the true concentration at time \( t_j \) of dog \( w \) in the population \( B_k \), and \( \epsilon_{kwj} \) are random errors. The function \( f(k, w, t_j) \) is defined on \( \{1\} \otimes B_1, \{2\} \otimes B_2, \{3\} \otimes B_3, \{4\} \otimes B_4 \otimes [0, 1] \).

Note that \( f(k, w, j) \) is a random variable since \( w \) is a random sample from \( B_k \). What we observe are realizations of this true mean function plus random errors. We use label \( i \) to denote dogs we actually observe.

Suppose we want to model the time effect using the cubic spline model space \( W_2^2[0, 1] \) under the construction in Section 2.6, and the group effect
using the classical one-way ANOVA model space $\mathbb{R}^4$ under the construction in Section 4.3.1. Define the following four averaging operators:

\[
A_2 f = \int_{\mathbb{R}_k} f(k, w, t) dP_k(w),
\]

\[
A_1 f = \frac{1}{4} \sum_{k=1}^4 A_2 f(k, t),
\]

\[
A_3 f = \int_0^1 f(k, w, t) dt,
\]

\[
A_4 f = \left( \int_0^1 \frac{\partial f(k, w, t)}{\partial t} dt \right) (t - 0.5).
\]

Then we have the following SS ANOVA decomposition:

\[
f = \{A_1 + (A_2 - A_1) + (I - A_2)\} \{A_3 + A_4 + (I - A_3 - A_4)\} f
\]

\[
= A_1 A_3 f + A_1 A_4 f + A_1 (I - A_3 - A_4) f
\]

\[
+ (A_2 - A_1) A_3 f + (A_2 - A_1) A_4 f + (A_2 - A_1)(I - A_3 - A_4) f
\]

\[
+ (I - A_2) A_3 f + (I - A_2) A_4 f + (I - A_2)(I - A_3 - A_4) f
\]

\[
= \mu + \beta(t - 0.5) + s_1(t) + \xi_k + \delta_k(t - 0.5) + s_2(k, t)
\]

\[
+ \alpha_{w(k)} + \gamma_{w(k)}(t - 0.5) + s_3(k, w, t),
\]

(9.45)

where $\mu$ is a constant, $\beta(t - 0.5)$ is the linear main effect of time, $s_1(t)$ is the smooth main effect of time, $\xi_k$ is the main effect of group, $\delta_k(t - 0.5)$ is the smooth-linear interaction between time and group, $s_2(k, t)$ is the smooth-smooth interaction between time and group, $\alpha_{w(k)}$ is the main effect of dog, $\gamma_{w(k)}(t - 0.5)$ is the smooth-linear interaction between time and dog, and $s_3(k, w, t)$ is the smooth-smooth interaction between time and dog. The overall main effect of time equals $\beta(t - 0.5) + s_1(t)$, the overall interaction between time and group equals $\delta_k(t - 0.5) + s_2(k, t)$, and the overall interaction between time and dog equals $\gamma_{w(k)}(t - 0.5) + s_3(k, w, t)$. The first six terms are fixed effects. The last three terms are random effects since they depend on the random variable $w$. Depending on time only, the first three terms represent the mean curve for all dogs. The middle three terms measure the departure of the mean curve for a particular group from the mean curve for all dogs. The last three terms measure the departure of a particular dog from the mean curve of a population from which the dog was chosen.

Based on the SS ANOVA decomposition (9.45), we will fit the following three models:

- **Model 1** includes the first seven terms in (9.45). It has a different population mean curve for each group plus a random intercept for
each dog. We assume that $\alpha_i \overset{iid}{\sim} N(0, \sigma^2_1)$, $\epsilon_{kij} \overset{iid}{\sim} N(0, \sigma^2)$, and the random effects and random errors are mutually independent.

- **Model 2** includes the first eight terms in (9.45). It has a different population mean curve for each group plus a random intercept and a random slope for each dog. We assume that $(\alpha_i, \gamma_i) \overset{iid}{\sim} N(0, \sigma^2 D_1)$, where $D_1$ is an unstructured covariance matrix, $\epsilon_{kij} \overset{iid}{\sim} N(0, \sigma^2)$, and the random effects and random errors are mutually independent.

- **Model 3** includes all nine terms in (9.45). It has a different population mean curve for each group plus a random intercept, a random slope, and a smooth random effect for each dog. We assume that $(\alpha_i, \gamma_i) \overset{iid}{\sim} N(0, \sigma^2 D_1)$, $s_3(k, i, t)$ are stochastic processes that are independent between dogs with mean zero and covariance function $\sigma^2_2 R_1(s, t)$, where $R_1$ is the cubic spline RK given in Table 2.2, $\epsilon_{kij} \overset{iid}{\sim} N(0, \sigma^2)$, and the random effects and random errors are mutually independent.

Model 1 and Model 2 can be fitted as follows:

```r
> data(dog)
> dog.fit1 <- slm(y~time,
 rk=list(cubic(time), shrink1(group),
 rk.prod(kron(time-.5), shrink1(group)),
 rk.prod(cubic(time), shrink1(group))),
 random=list(dog=~1), data=dog)
> dog.fit1
Semi-parametric linear mixed-effects model fit by REML
Model: y ~ time
Data: dog
Log-restricted-likelihood: -180.4784

Fixed: y ~ time
 (Intercept) time
 3.8716210 0.4339335

Random effects:
Formula: ~1 | dog
 (Intercept) Residual
 StdDev: 0.4980355 0.3924478

GML estimate(s) of smoothing parameter(s) : 0.0002338082
 0.0034079441 0.0038490075 0.0002048518
```
Equivalent Degrees of Freedom (DF): 13.00259
Estimate of sigma: 0.3924478
Number of Observations: 252

> dog.fit2 <- update(dog.fit1, random=list(dog=~time))
> dog.fit2

Semi-parametric linear mixed-effects model fit by REML
Model: y ~ time
Data: dog
Log-restricted-likelihood: -166.4478

Fixed: y ~ time
(Intercept)    time
 3.8767107   0.4196788

Random effects:
Formula: ~time | dog
Structure: General positive-definite,
    Log-Cholesky parametrization
StdDev    Corr
(Intercept)  0.4188186 (Intr)
time         0.5592910 0.025
Residual     0.3403256

GML estimate(s) of smoothing parameter(s) : 1.674916e-04
3.28688e-03 5.781563e-03 8.944897e-05
Equivalent Degrees of Freedom (DF): 13.83309
Estimate of sigma: 0.3403256

Number of Observations: 252

To fit Model 3, we need to find a way to specify the smooth (non-parametric) random effect $s_3$. Let $t = (t_1, \ldots, t_7)^T$ be the time points at which measurements were taken for each dog (note that time points are the same for all dogs), $u_i = (s_3(k,i,t_1), \ldots, s_3(k,i,t_7))^T$, and $u = (u_1^T, \ldots, u_3^T)^T$. Then $u_i \sim N(0, \sigma_2^2 D_2)$, where $D_2$ is the RK of a cubic spline evaluated at the design points $t$. Let $D_2 = HH^T$ be the Cholesky decomposition of $D_2$, $D = \text{diag}(D_2, \ldots, D_2)$, and $Z = \text{diag}(H, \ldots, H)$. Then $ZZ^T = D$. We can write $u = Zb_2$, where $b_2 \sim N(0, \sigma_2^2 I_n)$ and $n = 252$. Then we can specify the random effects $u$ using the matrix $Z$.

> D2 <- cubic(dog$time[1:7])
> H <- chol.new(D2)
> Z <- kronecker(diag(36), H)
> dog$all <- rep(1,36*7)
> dog.fit3 <- update(dog.fit2,
  random=list(all=pdIdent(~Z-1),dog=~time))
> summary(dog.fit3)

Semi-parametric Linear Mixed Effects Model fit
Model: y ~ time
Data: dog

Linear mixed-effects model fit by REML
Data: dog
  AIC      BIC   logLik
322.1771 360.9131 -150.0885

Random effects:
  Formula: ~Z - 1 | all
  Structure: Multiple of an Identity
    Z1   Z2   Z3   Z4   Z5   Z6
  StdDev: 3.90843 3.90843 3.90843 3.90843 3.90843 3.90843

Formula: ~time | dog %in% all
  Structure: General positive-definite, Log-Cholesky parametrization
    StdDev   Corr
  (Intercept) 0.4671544 (Intr)
time 0.5716972 -0.083
Residual 0.2383448

Fixed effects: y ~ time
  Value Std.Error DF  t-value p-value
(Intercept) 3.885270  0.08408051 215 46.20892  0e+00
time 0.404652  0.10952837 215  3.69449  3e-04
Correlation:
  (Intr)
time -0.224

Smoothing spline:
  GML estimate(s) of smoothing parameter(s): 8.775858e-05
  1.561206e-03 3.351111e-03 2.870198e-05
  Equivalent Degrees of Freedom (DF): 15.37740

The dimension of $b_2$ associated with the smooth random effects $s_3$
equals the total number of observations in the above construction. Therefore, computation and/or memory required for larger sample size can be prohibitive. One approach to stabilize and speed up the computation is to use the low rank approximation (Wood 2003). For generality, suppose time points for different dogs may be different. Let $t_{ij}$ for $j = 1, \ldots, n_i$ be the time points for dog $i$, $u_i = (s_3(k, i, t_{i1}), \ldots, s_3(k, i, t_{in_i}))^T$ and $u = (u_1^T, \ldots, u_m^T)^T$ where $m$ is the number of dogs. Then $u_i \sim N(0, \sigma^2_i \Pi_i)$, where $\Pi_i$ is the RK of a cubic spline evaluated at the design points $t_i = (t_{i1}, \ldots, t_{in_i})$. Let $\Pi_i = U_i \Gamma_i U_i^T$ be the eigendecomposition where $U_i$ is an $n_i \times n_i$ orthogonal matrix, $\Gamma_i = \text{diag}(\gamma_i, \ldots, \gamma_{in_i})$ and $\gamma_i \leq \gamma_{i+1} \leq \ldots \leq \gamma_{in_i}$ are eigenvalues. Usually some of the eigenvalues are much smaller than others. Discard $n_i - k_i$ smallest eigenvalues and let $H_{i1} = U_i \Gamma_{i1}$ where $\Gamma_{i1}$ is an $n_i \times k_i$ matrix with diagonal elements equal $\sqrt{\gamma_{i1}}, \ldots, \sqrt{\gamma_{ik_i}}$ and all other elements equal zero. Then $\Pi_i \approx H_{i1} H_{i1}^T$ and $D = \text{diag}(\Pi_1, \ldots, \Pi_m) \approx Z_1 Z_1^T$ where $Z_1 = \text{diag}(H_{i1}, \ldots, H_{m1})$.

We can approximate Model 3 using $u_1 = Z_1 b_2$ where $b_2 \sim N(0, \sigma^2_2 I_K)$ and $K = \sum_{i=1}^m k_i$. The dimension $K$ can be much smaller than $n$. Low rank approximations for other situations can be constructed similarly. 

The above approximation procedure is implemented to the dog data as follows:

```r
> chol.new1 <- function(Q, cutoff) {
 tmp <- eigen(Q)
 num <- sum(tmp$values < cutoff)
 k <- ncol(Q) - num
 t(as.matrix(tmp$vector[,1:k])) * sqrt(tmp$values[1:k])
}
> H1 <- chol.new1(D2, 1e-3)
> Z1 <- kronecker(diag(36), H1)
> dog$all1 <- rep(1, nrow(Z1))
> dog.fit3.1 <- update(dog.fit2,
 random = list(all1 = pdIdent(~Z1 - 1), dog = ~time))
> summary(dog.fit3.1)

Semi-parametric Linear Mixed Effects Model fit
Model: y ~ time
Data: dog

Linear mixed-effects model fit by REML
Data: dog
AIC BIC logLik
323.4819 362.2180 -150.7409

Random effects:
Semiparametric Mixed-Effects Models

Formula: ~Z1 - 1 | all1
Structure: Multiple of an Identity
 Z11 Z12 Z13 Z14 Z15 Z16
StdDev: 3.65012 3.65012 3.65012 3.65012 3.65012 3.65012
...

Formula: ~time | dog %in% all1
Structure: General positive-definite, Log-Cholesky parametrization
 StdDev Corr
(Intercept) 0.4635580 (Intr)
time 0.5690967 -0.07
Residual 0.2527408

Fixed effects: y ~ time
 Value Std.Error DF t-value p-value
(Intercept) 3.883828 0.08418382 215 46.13509 0e+00
 time 0.407229 0.11063269 215 3.68092 3e-04
Correlation:
 (Intr)
time -0.228

Smoothing spline:
 GML estimate(s) of smoothing parameter(s): 9.964788e-05
1.764225e-03 3.716363e-03 3.200021e-05
Equivalent Degrees of Freedom (DF): 15.39633

where eigenvalues smaller than 10^{-3} are discarded and $k_i = 2$. The R function `chol.new1` computes the truncated Cholesky decomposition. The fitting criteria and parameter estimates are similar to those from the full model. Another fit based on low rank approximation with the cutoff value 10^{-3} being replaced by 10^{-4} produces almost identical results as those from the full model.

As discussed in Section 9.2.2, Models 1, 2, and 3 are connected with three LME models and these connections are used to fit the SLM models. We can compare these three corresponding LME models as follows:

```r
> anova(dog.fit1$lme.obj, dog.fit2$lme.obj,
     dog.fit3$lme.obj)
```

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog.fit1$lme.obj</td>
<td>1</td>
<td>376.9568</td>
<td>405.1285</td>
<td>-180.4784</td>
</tr>
<tr>
<td>dog.fit2$lme.obj</td>
<td>2</td>
<td>352.8955</td>
<td>388.1101</td>
<td>-166.4478</td>
</tr>
<tr>
<td>dog.fit3$lme.obj</td>
<td>3</td>
<td>322.1771</td>
<td>360.9131</td>
<td>-150.0885</td>
</tr>
</tbody>
</table>
Test L.Ratio p-value

<table>
<thead>
<tr>
<th>Model 1 vs 2</th>
<th>Test Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog.fit1$lme.obj</td>
<td>1 vs 2</td>
<td>28.06128 < .0001</td>
</tr>
<tr>
<td>dog.fit2$lme.obj</td>
<td>2 vs 3</td>
<td>32.71845 < .0001</td>
</tr>
</tbody>
</table>

Even though they do not compare three SLM models directly, these comparison results seem to indicate that Model 3 is more favorable. More research on model selection and inference for SLM and SNM models is necessary.

We can calculate estimates of the population mean curves for four groups based on Model 3 as follows:

```r
> dog.grid <- data.frame(time=rep(seq(0,1,len=50),4),
                          group=as.factor(rep(1:4,rep(50,4))))
> e.dog.fit3 <- intervals(dog.fit3, newdata=dog.grid,
                          terms=rep(1,6))
```

Figure 9.5 shows the estimated mean curves and 95% Bayesian confidence intervals based on the fit `dog.fit3`.

![Figure 9.5](image)

FIGURE 9.5 Dog data, estimates of the group mean response curves (solid lines) with 95% Bayesian confidence intervals (dotted lines) based on the fit `dog.fit3`. Squares are within group average concentrations.

We have shrunk the group mean curves toward the overall mean curve. That is, we have penalized the group main effect ξ_k and the smooth-linear group-time interaction $\delta_k(t - 0.5)$ in the SS ANOVA decomposition (9.45). From Figure 9.5 we can see that the estimated population mean curve for group 2 is biased upward, while the estimated population...
mean curves for group 1 is biased downward. This is because responses from group 2 are smaller, while responses from group 1 are larger than those from groups 3 and 4. Thus, their estimates are pulled toward the overall mean. Shrinkage estimates in this case may not be advantageous since group only has four levels. One may want to leave ξ_k and $\delta_k(t-0.5)$ terms unpenalized to reduce biases. We can rewrite the fixed effects in (9.45) as

$$f_k(t) = \mu + \beta (t - 0.5) + s_1(t) + \xi_k + \delta_k(t - 0.5) + s_2(k,t)$$

where $f_k(t)$ is the mean curve for group k. Assume that $f_k \in W_2^2[0,1]$. Define penalty as

$$\int_0^1 (f_k''(t))^2 dt = ||\hat{s}_2(k,t)||^2.$$ Then the constant term $\hat{\xi}_k$ and the linear term $\hat{\delta}_k(t - 0.5)$ are not penalized. We can refit Model 1, Model 2, and Model 3 under this new form of penalty as follows:

```r
> dog.fit4 <- slm(y~group*time, rk=list(rk.prod(cubic(time),kron(group==1)), rk.prod(cubic(time),kron(group==2)), rk.prod(cubic(time),kron(group==3)), rk.prod(cubic(time),kron(group==4))), random=list(dog=~1), data=dog)
> dog.fit5 <- update(dog.fit4, random=list(dog=~time))
> dog.fit6 <- update(dog.fit5, random=list(all=pdIdent(~Z-1),dog=~time))
> e.dog.fit6 <- intervals(dog.fit6, newdata=dog.grid, terms=rep(1,12))
```

Figure 9.6 shows the estimated mean curves and 95% Bayesian confidence intervals based on the fit `dog.fit6`. The estimated mean functions are less biased.

We now show how to calculate predictions for all dogs based on the fit `dog.fit6`. The estimated mean functions can be computed using the `prediction` function. Predictions of random effects $\hat{\alpha}_i$ and $\hat{\gamma}_i$ can be extracted from the fit. Therefore, we only need to compute $\hat{s}_3(k,i,z)$. Suppose we want to predict s_3 for dog i in group k on a vector of points $z_i = (z_{i1},...,z_{ig})^T$. Let $v_i = (s_3(k,i,z_{i1}),...,s_3(k,i,z_{ig}))^T$ and $C_i = \text{Cov}(v_i,u_i) = \{R_1(z_{ik},t_j)\}_{k=1}^g_{j=1}$ for $i = 1,...,36$, where $R_1(z,t)$ is the cubic spline RK given in Table 2.2. Let $v = (v_1^T,...,v_{36}^T)^T$, $R = \ldots
FIGURE 9.6 Dog data, estimates of the group mean response curves (solid lines) with 95% Bayesian confidence intervals (dotted lines) based on the fit dog.fit6. Squares are within group average responses.

diag(C1, . . . , C36), and ū be the prediction of u. We then can compute the prediction for all dogs as ̂v = RD−1ū. The smallest eigenvalue of D is close to zero, and thus D−1 cannot be calculated precisely. We will use an alternative approach that does not require inverting D. Note that u = Zb2 and denote the estimate of b2 as ˆb2. If we can find a vector r (need not to be unique) such that

\[Z^T r = ˆb_2,\]
\[(9.47)\]

then

\[̂v = RD^{-1} ě = RD^{-1}Z ˆb_2 = RD^{-1}ZZ^T r = Rr.\]

So the task now is to solve (9.47). Let

\[Z = (Q_1 Q_2) \begin{pmatrix} V \\ 0 \end{pmatrix}\]

be the QR decomposition of Z. We consider r in the space spanned by Q1: r = Q1α. Then, from (9.47), α = V−T ˆb2. Thus, r = Q1V−T ˆb2 is a solution to (9.47). This approach also applies to the situation when D is singular. In the following we calculate predictions for all 36 dogs on a set of grid points. Note that groups 1, 2, 3, and 4 have 9, 10, 8, and 9 dogs, respectively.

\[> \text{dog.grid}2 <- \text{data.frame(time=rep(seq(0,1,len=50),36),}
\text{dog=rep(1:36,rep(50,36)))}\]
\begin{verbatim}
> R <- kronecker(diag(36),
 cubic(dog.grid2$time[1:50],dog$time[1:7]))
> b1 <- dog.fit6$lme.obj$coef$random$dog
> b2 <- as.vector(dog.fit6$lme.obj$coef$random$all)
> Z.qr <- qr(Z)
> r <- qr.Q(Z.qr)%*%solve(t(qr.R(Z.qr)))%*%b2
> tmp1 <- c(rep(e.dog.fit6$fit[dog.grid$group==1],9),
 rep(e.dog.fit6$fit[dog.grid$group==2],10),
 rep(e.dog.fit6$fit[dog.grid$group==3],8),
 rep(e.dog.fit6$fit[dog.grid$group==4],9))
> tmp2 <- as.vector(rep(b1[,1],rep(50,36)))
> tmp3 <- as.vector(kronecker(b1[,2],dog.grid2$time[1:50]))
> u.new <- as.vector(R%*%r)
> p.dog.fit6 <- tmp1+tmp2+tmp3+u.new
\end{verbatim}

Predictions for dogs 1, 2, 26, and 27 are shown in Figure 9.7.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dog_predictions.png}
\caption{Dog data, predictions for dogs 1, 2, 26, and 27. Pluses are observations and solid lines are predictions.}
\label{fig:dog_predictions}
\end{figure}

9.4.4 Carbon Dioxide Uptake

The carbon dioxide data set contains five variables: \texttt{plant} identifies each plant; \texttt{Type} has two levels, Quebec and Mississippi, indicating the origin of the plant; \texttt{Treatment} indicates two treatments, nonchilling and chilling; \texttt{conc} gives ambient carbon dioxide concentrations (mL/L); and \texttt{uptake} gives carbon dioxide uptake rates (umol/m2 sec). Figure 9.8
shows the CO₂ uptake rates for all plants.

The objective of the experiment was to evaluate the effect of plant type and chilling treatment on CO₂ uptake. Pinheiro and Bates (2000) gave detailed analyses of this data set based on NLME models. They reached the following NLME model:

\[
\text{uptake}_{ij} = e^{\phi_1 i} \left\{1 - e^{-e^{\phi_2 i} (\text{conc}_j - \phi_3 i)}\right\} + \epsilon_{ij},
\]

\[
\phi_1 i = \beta_{11} + \beta_{12} \text{Type} + \beta_{13} \text{Treatment} + \beta_{14} \text{Treatment:Type} + b_i,
\]

\[
\phi_2 i = \beta_{21},
\]

\[
\phi_3 i = \beta_{31} + \beta_{32} \text{Type} + \beta_{33} \text{Treatment} + \beta_{34} \text{Treatment:Type},
\]

\[i = 1, \ldots, 12; j = 1, \ldots, 7,\] (9.48)

where \(\text{uptake}_{ij}\) denotes the CO₂ uptake rate of plant \(i\) at CO₂ ambient concentration \(\text{conc}_j\); Type equals 0 for plants from Quebec and 1 for plants from Mississippi; Treatment equals 0 for chilled plants and 1 for control plants; \(e^{\phi_1 i}\), \(e^{\phi_2 i}\), and \(\phi_3 i\) denote, respectively, the asymptotic uptake rate, the uptake growth rate, and the maximum ambient CO₂ concentration at which no uptake is verified for plant \(i\); random effects \(b_i \sim i.i.d. \sim N(0, \sigma_b^2)\); and random errors \(\epsilon_{ij} \sim i.i.d. \sim N(0, \sigma^2)\). Random effects and random errors are mutually independent. Note that we used exponential transformations to enforce the positivity constraints.

```r
> data(CO2)
> co2.nlme <-
  nlme(uptake~exp(a1)*(1-exp(-exp(a2)*(conc-a3))),
       fixed=list(a1+a2~Type*Treatment,a3~1),
       random=a1~1, groups=~Plant, data=CO2,
       start=c(log(30),0,0,0,log(0.01),0,0,0,50))
> summary(co2.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ exp(a1)*(1-exp(-exp(a2)*(conc - a3)))
Data: CO2

AIC  BIC  logLik
393.2869 420.0259 -185.6434

Fits of model (9.48) are shown in Figure 9.8 as dotted lines. Based on model (9.48), one may conclude that the CO₂ uptake is higher for plants from Quebec, and that chilling, in general, results in lower uptake, and its effect on Mississippi plants is much larger than on Quebec plants.

We use this data set to demonstrate how to fit an SNM model and how to check if an NLME model is appropriate. As an extension of (9.48),
FIGURE 9.8  Carbon dioxide data, plot of observations, and fitted curve for each plant. Circles are CO₂ uptake rates. Solid lines represent SNM model fits from co2.smm. Dotted lines represent NLME model fits from co2.nlme. Strip names represent IDs of plants with “Q” indicating Quebec, “M” indicating Mississippi, “c” indicating chilled, “n” indicating nonchilled, and “1”, “2”, “3” indicating the replicate numbers.
we consider the following SNM model
\[
uptake_{ij} = e^{\phi_{i1}} f(e^{\phi_{i2}}(conc_j - \phi_{3i})) + \epsilon_{ij},
\]
\[
\phi_{i1} = \beta_{12}\text{Type} + \beta_{13}\text{Treatment} + \beta_{14}\text{Treatment:Type} + b_i,
\]
\[
\phi_{i2} = \beta_{21},
\]
\[
\phi_{3i} = \beta_{31} + \beta_{32}\text{Type} + \beta_{33}\text{Treatment} + \beta_{34}\text{Treatment:Type},
\]
\(i = 1, \ldots, 12; j = 1, \ldots, 7,\) \hspace{1cm} (9.49)

where \(f \in W_2^2[0, b]\) for some fixed \(b > 0\), and the second-stage model is similar to that in (9.48). In order to test if the parametric model (9.48) is appropriate, we use the exponential spline introduced in Section 2.11.2 with \(\gamma = 1\). Then \(H_0 = \text{span}\{1, \exp(-x)\}\), and \(H_1 = W_2^2[0, b] \ominus H_0\) with RK given in (2.58). Note that \(\beta_{11}\) in (9.48) is excluded from (9.49) to make \(f\) free of constraint on the vertical scale. We need the side conditions that \(f(0) = 0\) and \(f(x) \neq 0\) for \(x \neq 0\) to make \(\beta_{31}\) identifiable with \(f\). The first condition reduces \(H_0\) to \(\tilde{H}_0 = \text{span}\{1 - \exp(-x)\}\) and is satisfied by all functions in \(H_2\). We do not enforce the second condition because it is satisfied by all reasonable estimates. Thus the model space for \(f\) is \(\tilde{H}_0 \oplus H_1\). It is clear that the NLME model is a special case of the SNM model with \(f \in \tilde{H}_0\). In the following we fit the SNM model (9.49) with initial values chosen from the NLME fit. The procedure converged after five iterations.

```r
> M <- model.matrix(~Type*Treatment, data=CO2)[-1]
> co2.snm <- snm(uptake~exp(a1)*f(exp(a2)*(conc-a3)),
 func=f(u)~list(~I(1-exp(-u))-1,lspline(u,type='exp')),
 fixed=list(a1~M-1,a3~1,a2~Type*Treatment),
 random=list(a1~1), group=~Plant, verbose=T,
 start=co2.nlmecoefixed[c(2:4,9,5:8)], data=CO2)
> summary(co2.snm)
```

Semi-parametric Nonlinear Mixed Effects Model fit
Model: uptake ~ exp(a1) * f(exp(a2) * (conc - a3))
Data: CO2

\[
\begin{array}{ccc}
\text{AIC} & \text{BIC} & \log\text{Lik} \\
406.4865 & 441.625 & -188.3760 \\
\end{array}
\]

GCV estimate(s) of smoothing parameter(s): 1.864814
Equivalent Degrees of Freedom (DF): 4.867183

Converged after 5 iterations

Fits of model (9.49) are shown in Figure 9.8 as solid lines. Since the data set is small, different initial values may lead to different estimates.
However, the overall fits are similar. We also fitted models with AR(1) within-subject correlations and covariate effects on \( \phi_3 \). None of these models improve fits significantly. The estimates are comparable to the NLME fit, and the conclusions remain the same as those based on (9.48).

To check if the parametric NLME model (9.48) is appropriate, we calculate the posterior means and standard deviations using the function `intervals`. Note that the `intervals` function returns an object of class called “bCI” to which the generic function `plot` can be applied directly.

\[
\begin{align*}
> \text{co2.grid2} &\leftarrow \text{data.frame}(u=\text{seq}(0.3, 11, \text{len}=50)) \\
> \text{co2.ci} &\leftarrow \text{intervals(co2.snm, newdata=co2.grid2, terms=matrix(c(1,1,1,0,0,1), ncol=2, byrow=T))} \\
> \text{plot(co2.ci, terms=matrix(c(1,1,1,0,0,1), ncol=2, byrow=T))}
\end{align*}
\]

\[\text{FIGURE 9.9}\] Carbon dioxide data, estimate of the overall function \( f \) (left), its projection onto \( \tilde{H}_0 \) (center), and \( H_1 \) (right). Solid lines are fitted values. Dash lines are approximate 95\% Bayesian confidence intervals.

Figure 9.9 shows the estimate of \( f \) and its projection onto \( \tilde{H}_0 \) and \( H_1 \). The zero line is inside the Bayesian confidence intervals for the projection onto \( H_1 \) (smooth component), which suggests that the parametric NLME model (9.48) is adequate.
9.4.5 Circadian Rhythm — Revisit

We have fitted an SIM (8.59) for normal subjects in Section 8.4.6 where parameters $\beta_1$, $\beta_2$, and $\beta_3$ are deterministic. The fixed effects SIM (8.59) has several drawbacks: (1) potential correlations among observations from the same subject are ignored; (2) the number of deterministic parameters is large; and (3) it is difficult to investigate covariate effects on parameters and/or the common shape function. In this section we show how to fit the hormone data using SNM models. More details can be found in Wang, Ke and Brown (2003).

We first consider the following mixed-effects SIM for a single group

$$conc_{ij} = \mu + b_{1i} + \exp(b_{2i})f(t_{ij} - a\text{logit}(b_{3i})) + \epsilon_{ij},$$

where the fixed effect $\mu$ represents 24-hour mean of the population, the random effects $b_{1i}, b_{2i},$ and $b_{3i}$ represent deviations in 24-hour mean, amplitude, and phase of subject $i$. We assume that $f \in W_2^2(\text{per}) \ominus \{1\}$ and $b_i = (b_{1i}, b_{2i}, b_{3i})^T \overset{iid}{\sim} \mathcal{N}(0, \sigma^2 D)$, where $D$ is an unstructured positive-definite matrix. The assumption of zero population mean for amplitude and phase, and the removal of constant functions from the periodic spline space, take care of potential confounding between amplitude, phase, and the nonparametric common shape function $f$. We fit model (9.50) to cortisol measurements from normal subjects as follows:

```r
> nor <- horm.cort[horm.cort$type=='normal',]
> nor.snm.fit <- snm(conc~b1+exp(b2)*f(time-alogit(b3)),
 func=f(u)~list(periodic(u)),
 data=nor, fixed=list(b1~1), random=list(b1+b2+b3~1),
 start=c(mean(nor$conc)), groups=~ID, spar='m')
> summary(nor.snm.fit)
```

Semi-parametric Nonlinear Mixed Effects Model fit
Model: conc ~ b1 + exp(b2) * f(time - alogit(b3))
Data: nor

AIC  BIC  logLik
176.1212 224.1264 -70.07205

Random effects:
Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)
Level: ID
Structure: General positive-definite,
Log-Cholesky parametrization
StdDev Corr
Semiparametric Mixed-Effects Models

\[ b_1 \quad 0.2462385 \quad b_2 \]
\[ b_2 \quad 0.1803665 \quad -0.628 \]
\[ b_3 \quad 0.2486114 \quad 0.049 \quad -0.521 \]
Residual 0.3952836

Fixed effects: list(b1 ~ 1)
\begin{tabular}{lccc}
  Value & Std.Error & DF & t-value & p-value \\
  b1 & 1.661412 & 0.07692439 & 98 & 21.59799 & 0 \\
\end{tabular}

GML estimate(s) of smoothing parameter(s): 0.0001200191
Equivalent Degrees of Freedom (DF): 9.988554

Converged after 10 iterations

We compute predictions for all subjects evaluated at grid points:
\[
\text{nor.grid} <- \text{data.frame(ID=rep(unique(nor$ID),rep(50,9)), time=rep(seq(0,1,len=50),9))}
\]
\text{nor.snm.p} <- predict(nor.fit, newdata=nor.grid)

The predictions are shown in Figure 9.10. In the following we also fit model (9.50) to depression and Cushing groups. Observations and predictions based on model (9.50) for these two groups are shown in Figures 9.11 and 9.12, respectively.

\[
\text{dep.snm.fit} <- \text{snm(conc~b1+exp(b2)*f(time-aologit(b3)), func=f(u)~list(periodic(u)), data=dep, fixed=list(b1~1), random=list(b1+b2+b3~1), start=c(mean(dep$conc)), groups=~ID, spar='m')}
\]
\[
\text{cush.snm.fit} <- \text{snm(conc~b1+exp(b2)*f(time-aologit(b3)), func=f(u)~list(periodic(u)), data=cush, fixed=list(b1~1), random=list(b1+b2+b3~1), start=c(mean(cush$conc)), groups=~ID, spar='m')}\]

We calculate the posterior means and standard deviations of the common shape functions for all three groups:
\[
\text{ci.grid} <- \text{data.frame(time=seq(0,1,len=50))}
\]
\[
\text{nor.ci} <- \text{intervals(nor.snm.fit, newdata=ci.grid)}
\]
\[
\text{dep.ci} <- \text{intervals(dep.snm.fit, newdata=ci.grid)}
\]
\[
\text{cush.ci} <- \text{intervals(cush.snm.fit, newdata=ci.grid)}
\]

The estimated common shape functions and 95% Bayesian confidence intervals for three groups are shown in Figure 9.13.
FIGURE 9.10 Hormone data, normal subjects, plots of cortisol concentrations (circles), and fitted curves based on model (9.50) (solid lines) and model (9.53) (dashed lines). Subjects’ ID are shown in the strip.
FIGURE 9.11  Hormone data, depressed subjects, plots of cortisol concentrations (circles), and fitted curves based on model (9.50) (solid lines) and model (9.53) (dashed lines). Subjects’ ID are shown in the strip.
FIGURE 9.12 Hormone data, subjects with Cushing’s disease, plots of cortisol concentrations (circles), and fitted curves based on model (9.50) (solid lines). Subjects’ ID are shown in the strip.
FIGURE 9.13 Hormone data, estimates of the common shape function $f$ (lines), and 95% Bayesian confidence intervals (shaded regions). The left three panels are estimates based on model (9.50) for normal, depression, and Cushing groups, respectively. The right panel is the estimate based on model (9.53) for combined data from normal and depression groups.

It is obvious that the common function for the Cushing group is almost zero, which suggests that, in general, circadian rhythms are lost for Cushing patients. It seems that the shape functions for normal and depression groups are similar. We now test the hypothesis that the shape functions for normal and depression groups are the same by fitting data from these two groups jointly. Consider the following model

$$
\text{conc}_{ijk} = \mu_k + b_{1ik} + \exp(b_{2ik})f(k, \text{time}_{ijk} - \text{alogit}(b_{3ik})) + \epsilon_{ijk},
$$

where $k$ represents group factor with $k = 1$ and $k = 2$ corresponding to the depression and normal groups, respectively; fixed effect $\mu_k$ is the population 24-hour mean of group $k$; random effects $b_{1ik}$, $b_{2ik}$, and $b_{3ik}$ represent the $i$th subject’s deviation of 24-hour mean, amplitude, and phase. Note that subjects are nested within groups. We allow different variances for the random effects in each group. Thus $f$ is a function of both group (denoted as $k$) and time. Since $f$ is periodic in time, we model $f$ using the tensor product space $\mathbb{R}^2 \otimes W^2_{2}(\text{per})$. Specifically, consider the SS ANOVA decomposition (4.22). The constant and main effect of group are removed for identifiability with $\mu_k$. Therefore, we assume the following model for $f$:

$$
f(k, \text{time}) = f_1(\text{time}) + f_{12}(k, \text{time}),
$$
where \( f_1(\text{time}) \) is the main effect of time, and \( f_{12}(k, \text{time}) \) is the interaction between group and time. The hypothesis \( H_0: f(1, \text{time}) = f(2, \text{time}) \) is equivalent to \( H_0: f_{12}(k, \text{time}) = 0 \) for all values of the time variable. Model (9.51) is fitted as follows:

```r
> nordep <- horm.cort[horm.cort$type!='cushing',]
> nordep$type <- as.factor(as.vector(nordep$type))
> nordep.fit1 <- snm(conc~b1+exp(b2)*f(type,time-alogit(b3)),
func=f(g,u)~list(list(periodic(u),
 rk.prod(shrink1(g),periodic(u)))),
data=nordep, fixed=list(b1~type), random=list(b1+b2+b3~1),
 groups=~ID, weights=varIdent(form=~1|type),
spar='m', start=c(1.8,-.2))
> summary(nordep.fit1)
```

Semi-parametric Nonlinear Mixed Effects Model fit

Model: conc ~ b1 + exp(b2) * f(type, time - alogit(b3))
Data: nordep

AIC  BIC  logLik
441.4287 542.7464 -191.5463

Random effects:
  Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)
  Level: ID
  Structure: General positive-definite,
  Log-Cholesky parametrization

<table>
<thead>
<tr>
<th>StdDev</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1.(Intercept) 0.3403483</td>
<td>b1.(I) b2</td>
</tr>
<tr>
<td>b2        0.2936284</td>
<td>-0.781</td>
</tr>
<tr>
<td>b3        0.2962941</td>
<td>0.016   -0.159</td>
</tr>
<tr>
<td>Residual  0.4741110</td>
<td></td>
</tr>
</tbody>
</table>

Variance function:
  Structure: Different standard deviations per stratum
  Formula: ~1 | type

Parameter estimates:

depression normal
  1.000000 0.891695

Fixed effects: list(b1 ~ type)

<table>
<thead>
<tr>
<th>Value</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1.(Intercept) 1.8389689</td>
<td>0.08554649</td>
<td>218</td>
<td>21.496719</td>
<td>0.0000</td>
</tr>
<tr>
<td>b1.typecush2 0.000000</td>
<td>0.000000</td>
<td>218</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>b1.typecush1 0.2962941</td>
<td>0.016</td>
<td>218</td>
<td>-15.90</td>
<td>0.0000</td>
</tr>
<tr>
<td>b1.typecush1 0.2936284</td>
<td>0.016</td>
<td>218</td>
<td>-15.90</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Correlation:
The smoothing parameter for the interaction term $f_{12}(k, \text{time})$ is large, indicating that the interaction is negligible. We compute posterior mean and standard deviation of the interaction term:

```r
> u <- seq(0,1,len=50)
> nordep.inter <- intervals(nordep.fit1, terms=c(0,1),
newdata=data.frame(g=rep(c('normal','depression'),
c(50,50)),u=rep(u,2)))
> range(nordep.inter$fit)
-9.847084e-06 1.349702e-05
> range(nordep.inter$pstd)
0.001422883 0.001423004
```

The posterior means are on the magnitude of $10^{-5}$, while the posterior standard deviations are on the magnitude of $10^{-3}$. The estimate of $f_{12}$ is essentially zero. Therefore, it is appropriate to assume the same shape function for normal and depression groups.

Under the assumption of one shape function for both normal and depression groups, we now can investigate differences of 24-hour mean, amplitude, and phase between two groups. For this purpose, consider the following model

$$
\text{conc}_{ijk} = \mu_k + b_{1ik} + \exp(b_{2ik} + \delta_{k2}d_1) \times 
\begin{array}{c}
\text{f(time}_{ijk} - \text{alogit(b3} + \delta_{k2}d_2)) + \epsilon_{ijk},
\end{array}
\quad i = 1,...,m, \quad j = 1,...,n, \quad k = 1,2, \quad (9.53)
$$

where $\delta_{k2}$ is the Kronecker delta, and parameters $d_1$ and $d_2$ account for the differences in amplitude and phase, respectively, between normal and depression groups.

```r
> nordep.fit2 <- snm(conc~b1+exp(b2+d1*I(type==''normal''))*f(time-alogit(b3+d2*I(type==''normal''))),
func=f(u)~list(periodic(u)), data=nordep,
fixed=list(b1~type,d1+d2~1), random=list(b1+b2+b3~1),
groups=~ID, weights=varIdent(form=~1|type),
```
Semi-parametric Nonlinear Mixed Effects Model fit

Model: conc ~ b1 + \exp(b2 + d1 * I(type == 'normal')) * f(time - alogit(b3 + d2 * I(type == 'normal')))  

Data: nordep

AIC      BIC      logLik
429.9391 503.4998 -193.7516

Random effects:
Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)
Level: ID
Structure: General positive-definite, Log-Cholesky parametrization

StdDev  Corr
b1.(Intercept) 0.3309993  b1.(I) b2
b2      0.2841053  -0.781
b3      0.2901979  0.030  -0.189
Residual 0.4655115

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | type

Parameter estimates:
  depression  normal
1.0000000  0.8908655

Fixed effects: list(b1 ~ type, d1 + d2 ~ 1)

<table>
<thead>
<tr>
<th>Value</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1.(Intercept)</td>
<td>1.8919482</td>
<td>0.08590594</td>
<td>216</td>
<td>22.023485</td>
</tr>
<tr>
<td>b1.typenormal</td>
<td>-0.2558220</td>
<td>0.14361590</td>
<td>216</td>
<td>-1.781293</td>
</tr>
<tr>
<td>d1</td>
<td>0.2102017</td>
<td>0.10783207</td>
<td>216</td>
<td>1.949343</td>
</tr>
<tr>
<td>d2</td>
<td>0.0281460</td>
<td>0.09878700</td>
<td>216</td>
<td>0.284916</td>
</tr>
</tbody>
</table>

Correlation:

b1.(I)  b1.typ  d1
b1.typenormal  -0.598
  d1           0.000  -0.509
  d2           0.000  0.023  -0.159

GML estimate(s) of smoothing parameter(s): 0.0004723142
Equivalent Degrees of Freedom (DF): 9.217902

Converged after 9 iterations
The differences of 24-hour mean and amplitude are borderline significant, while the difference of phase is not. We refit without the $d_2$ term:

```r
> nordep.fit3 <- snm(conc~b1+
 exp(b2+d1*I(type=='normal'))*f(time-alogit(b3)),
 func=f(u)~list(periodic(u)), data=nordep,
 fixed=list(b1~type,d1~1), random=list(b1+b2+b3~1),
 groups=~ID, weights=varIdent(form=~1|type),
 spar='m', start=c(1.9,-0.3,0))
> summary(nordep.fit3)
```

Semi-parametric Nonlinear Mixed Effects Model fit

Model: conc ~ b1 + exp(b2 + d1 * I(type == 'normal')) * f(time - alogit(b3))
Data: nordep

AIC  BIC  logLik
425.2350 495.3548 -192.4077

Random effects:
Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)
Level: ID
Structure: General positive-definite, Log-Cholesky parametrization

<table>
<thead>
<tr>
<th>StdDev</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1.(Intercept)</td>
<td>0.3302233 b1.(I) b2</td>
</tr>
<tr>
<td>b2</td>
<td>0.2835421 -0.780</td>
</tr>
<tr>
<td>b3</td>
<td>0.2898165 0.033 -0.192</td>
</tr>
<tr>
<td>Residual</td>
<td>0.4647148</td>
</tr>
</tbody>
</table>

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | type
Parameter estimates:
depression  normal  1.0000000 0.8902948

Fixed effects: list(b1 ~ type, d1 ~ 1)

<table>
<thead>
<tr>
<th>Value</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1.(Intercept)</td>
<td>1.8919931</td>
<td>0.08574693</td>
<td>217</td>
<td>22.064849</td>
</tr>
<tr>
<td>b1.typenormal</td>
<td>-0.2567236</td>
<td>0.14327117</td>
<td>217</td>
<td>-1.791872</td>
</tr>
<tr>
<td>d1</td>
<td>0.2148962</td>
<td>0.10620988</td>
<td>217</td>
<td>2.023316</td>
</tr>
</tbody>
</table>

Correlation:
b1.(I) b1.typ  
b1.typenormal -0.598
Smo othing Splines: Methods and Applications

\[ d_1 = 0.000 -0.512 \]

GML estimate(s) of smoothing parameter(s): 0.0004742399
Equivalent Degrees of Freedom (DF): 9.20981
Converged after 8 iterations

The predictions based on the final fit are shown in Figures 9.10 and 9.11. The estimate of the common shape function \( f \) is shown in the right panel of Figure 9.13. Data from two groups are pooled to estimate the common shape function, which leads to narrower confidence intervals. The final model suggests that the depressed subjects have their mean cortisol level elevated and have less profound circadian rhythm than normal subjects.

To take a closer look, we extract estimates of 24-hour mean levels and amplitudes for all subjects in normal and depression groups and perform binary recursive partitioning using these two variables:

```r
dep.mean <- nordep.fit3$coef$fixed[1]+nordep.fit3$coef$random$ID[1:11,1]
nor.amp <- exp(nordep.fit3$coef$fixed[3]+nordep.fit3$coef$random$ID[12:20,2])
dep.amp <- exp(nordep.fit3$coef$random$ID[1:11,2])
u <- c(nor.mean, dep.mean)
v <- c(nor.amp, dep.amp)
s <- c(rep('n',9),rep('d',11))
library(rpart)
prune(rpart(s~u+v), cp=.1)
```

Figure 9.14 shows the estimated 24-hour mean levels plotted against the estimated amplitudes. There is a negative relationship between the 24-hour mean and amplitude. The estimate of correlation between \( b_{1ik} \) and \( b_{2ik} \) equals \(-0.781\). The normal subjects and depressed patients can be well separated by the 24-hour mean level.
FIGURE 9.14 Hormone data, plot of the estimated 24-hour mean levels against amplitudes. Normal subjects and depressed patients are marked as “n” and “d”, respectively. The dotted line represents partition based on the tree method.
Appendix A

Data Sets

In this appendix we describe data sets used for illustrations in this book. Table A.1 lists all data sets.

<table>
<thead>
<tr>
<th>Table A.1</th>
<th>List of all data sets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td>New York air quality measurements</td>
</tr>
<tr>
<td>Arosa</td>
<td>Monthly ozone measurements from Arosa</td>
</tr>
<tr>
<td>Beveridge</td>
<td>Beveridge wheat price index</td>
</tr>
<tr>
<td>Bond</td>
<td>Treasury and GE bonds</td>
</tr>
<tr>
<td>Canadian weather</td>
<td>Monthly temperature and precipitation from 35 Canadian stations</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>Carbon dioxide uptake in grass plants</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>Monthly chickenpox cases in New York City</td>
</tr>
<tr>
<td>Child growth</td>
<td>Height of a child over one school year</td>
</tr>
<tr>
<td>Dog</td>
<td>Coronary sinus potassium in dogs</td>
</tr>
<tr>
<td>Geyser</td>
<td>Old Faithful geyser data</td>
</tr>
<tr>
<td>Hormone</td>
<td>Cortisol concentrations</td>
</tr>
<tr>
<td>Lake acidity</td>
<td>Acidity measurements from lakes</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Melanoma incidence rates in Connecticut</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>Simulated motorcycle accident data</td>
</tr>
<tr>
<td>Paramecium caudatum</td>
<td>Growth of paramecium caudatum population</td>
</tr>
<tr>
<td>Rock</td>
<td>Measurements on petroleum rock samples</td>
</tr>
<tr>
<td>Seizure</td>
<td>IEEG segments from a seizure patient</td>
</tr>
<tr>
<td>Star</td>
<td>Magnitude of the Mira variable R Hydrae</td>
</tr>
<tr>
<td>Stratford weather</td>
<td>Daily maximum temperatures in Stratford</td>
</tr>
<tr>
<td>Superconductivity</td>
<td>Superconductivity magnetization</td>
</tr>
<tr>
<td>Texas weather</td>
<td>Texas historical climate data</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>Ultrasound imaging of the tongue shape</td>
</tr>
<tr>
<td>USA climate</td>
<td>Average winter temperatures in USA</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Weight loss of an obese patient</td>
</tr>
<tr>
<td>WESDR</td>
<td>Wisconsin Epidemiological Study of Diabetic Retinopathy</td>
</tr>
<tr>
<td>World climate</td>
<td>Global average winter temperature</td>
</tr>
</tbody>
</table>
A.1 Air Quality Data

This data set contains daily air quality measurements in New York City, May to September of 1973. Four variables were measured: mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island (denoted as Ozone), average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport (denoted as Wind), maximum daily temperature in degrees Fahrenheit at LaGuardia Airport (denoted as Temp), and solar radiation in Langley in the frequency band 4000-7700 Angstroms from 0800 to 1200 hours at Central Park (denoted as Solar.R). The data set is available in R with the name airquality.

A.2 Arosa Ozone Data

This is a data set in Andrews and Herzberg (1985) contains monthly mean ozone thickness (Dobson units) in Arosa, Switzerland, from 1926 to 1971. It consists of 518 observations on three variables: thick for ozone thickness, month, and year. The data set is available in library assist with the name Arosa.

A.3 Beveridge Wheat Price Index Data

The data set contains Beveridge wheat price index averaged over many locations in western and central Europe from 1500 to 1869. The data set is available in library tseries with the name bev.

A.4 Bond Data

144 GE (General Electric Company) bonds and 78 Treasury bonds were collected from Bloomberg. The data set contains four variables: name of a bond, current price, payment at future times, and type of the bond. The number of payments till due ranges from 1 to 27 with a median 3
for the GE bonds, and from 1 to 58 with a median 2.5 for Treasury. The maximum time to maturity is 14.8 years for GE bonds and 28.77 years for Treasury bonds. The data set is available in library assist with the name bond.

---

### A.5 Canadian Weather Data

The data set contains mean monthly temperature and precipitation at 35 Canadian weather stations (Ramsay and Silverman 2005). It consists of 420 observations on five variables: temp for temperature in Celsius, prec for precipitation in millimeters, station code number, geological zone, and month. The data set is available in library fda with the name CanadianWeather.

---

### A.6 Carbon Dioxide Data

This data set comes from a study of cold tolerance of a C4 grass species, *Echinochloa crus-galli*. A total of 12 four-week-old plants were used in the study. There were two types of plants: six from Quebec and six from Mississippi. Two treatments, nonchilling and chilling, were assigned to three plants of each type. Nonchilled plants were kept at 26°C, and chilled plants were subject to 14 hours of chilling at 7°C. After 10 hours of recovery at 20°C, CO₂ uptake rates (in umol/m²s) were measured for each plant at seven concentrations of ambient CO₂ in increasing, consecutive order. More details can be found in Pinheiro and Bates (2000). The data set is available in library nlme with the name CO2.

---

### A.7 Chickenpox Data

The data set, downloaded at http://robjhyndman.com/tsdldata/epi/chicknyc.dat, contains monthly number of reported cases of chickenpox in New York City from 1931 to the first 6 months of 1972. It
consists of 498 observations on three variables: count, month, and year. The data set is available in library assist with the name chickenpox.

A.8 Child Growth Data

Height measurements of a child were recorded over one school year (Ramsay 1998). The data set contains 83 observations on two variables: height in centimeters and day in a year. The data set is available in library fda with the name onechild.

A.9 Dog Data

A total of 36 dogs were assigned to four groups: control, extrinsic cardiac denervation 3 weeks prior to coronary occlusion, extrinsic cardiac denervation immediately prior to coronary occlusion, and bilateral thoracic sympathectomy and stellectomy 3 weeks prior to coronary occlusion. Coronary sinus potassium concentrations (millilitre equivalents per liter) were measured on each dog every 2 minutes from 1 to 13 minutes after occlusion. This data was originally presented by Grizzle and Allen (1969). It is available in library assist with the name dog.

A.10 Geyser Data

This data set contains 272 measurements from the Old Faithful geyser in Yellowstone National Park. Two variables were recorded: duration as the eruption time in minutes, and waiting as the waiting time in minutes to the next eruption. The data set is available in R with the name faithful.
A.11 Hormone Data

In an experiment to study immunological responses in humans, blood samples were collected every two hours for 24 hours from 9 healthy normal volunteers, 11 patients with major depression and 16 patients with Cushing’s syndrome. These blood samples were analyzed for parameters that measure immune functions and hormones of the Hypothalamic-Pituitary-Adrenal axis (Kronfol, Nair, Zhang, Hill and Brown 1997). We will concentrate on hormone cortisol. The data set contains four variables: ID for subject index, time for time points when blood samples were taken, type as a group indicator for subjects and conc for cortisol concentration on log_{10} scale. The variable time is scaled into the interval [0, 1]. The data set is available in library assist with the name horm.cort.

A.12 Lake Acidity Data

This data set was derived by Douglas and Delampady (1990) from the Eastern Lakes Survey of 1984. The study involved measurements of 1789 lakes in three Eastern US regions: Northeast, Upper Midwest, and Southeast. We use a subset of 112 lakes in the southern Blue Ridge mountains area. The data set contains 112 observations on four variables: ph for water pH level, t1 for calcium concentration in log_{10} milligrams per liter, x1 for latitude, and x2 for longitude. The data set is available in library assist with the name acid.

A.13 Melanoma Data

This is a data set in Andrews and Herzberg (1985) that contains numbers of melanoma cases per 100,000 in the state of Connecticut during 1936–1972. It consists of 37 observations on two variables: cases for numbers of melanoma cases per 100,000, and year. The data set is available in library fda with the name melanoma.
A.14 Motorcycle Data
These data come from a simulated motorcycle crash experiment on the
efficacy of crash helmets. The data set contains 133 measurements on
two variables: accel as head acceleration in g of a subject and time as
time after impact in milliseconds. The data set is available in library
MASS with the name mcycle.

A.15 Paramecium caudatum Data
This is a data set in Gause (1934) that contains growth of paramecium
caudatum population in the medium of Osterhout. It consists of 25 ob-
servations on two variables: days since the start of the experiment, and
density representing the mean number of individuals in 0.5 milliliter of
medium of four different cultures started simultaneously. The data set
is available in library assist with the name paramecium.

A.16 Rock Data
This data set contains measurements on 48 rock samples collected from
a petroleum reservoir. Four variables were measured: area of pores
space in pixels out of 256 by 256, perimeter in pixels (denoted as peri),
shape in perimeter/area$^{1/2}$, and permeability in milli-Darcies (denoted
as perm). The data set is available in R with the name rock.

A.17 Seizure Data
This data set, provided by Li Qin, contains two 5-minute intracranial
electroencephalograms (IEEG) segments from a seizure patient: base in-
cludes the baseline segment extracted at least 4 hours before the seizure's
onset, and preseizure includes the segment right before a seizure's clin-
ical onset. The sampling rate is 200 Hertz. Therefore, there are 60,000
Data Sets

Data sets are available in the library with the names specified below:

A.18 Star Data

This data set, provided by Marc G. Genton, contains magnitude (brightness) of the Mira variable R Hydrea during 1900–1950. It consists of two variables: magnitude and time in days. The data set is available in library assist with the name seizure.

A.19 Stratford Weather Data

This is part of a climate data set downloaded from the Carbon Dioxide Information Analysis Center at http://cdiac.ornl.gov/ftp/ndp070. Daily maximum temperatures from the station in Stratford, Texas, in the year 1990 were extracted. The year was divided into 73 five-day periods, and measurements on the third day in each period were selected as observations. Therefore, the data set consists of 73 observations on two variables: \( y \) as the observed maximum temperature in Fahrenheit, and \( x \) as the time scaled into \([0, 1]\). The data set is available in library assist with the name Stratford.

A.20 Superconductivity Data

The data come from a study involving superconductivity magnetization modeling conducted by the National Institute of Standard and Technology. The data set contains 154 observations on two variables: magnetization in \( \text{ampere} \times \text{meter}^2/\text{kilogram} \), and \( \log \text{time} \) in minutes. Temperature was fixed at 10 degrees Kelvin. The data set is available in library NISTnls with the name Bennett5.
**A.21 Texas Weather Data**

The data set contains average monthly temperatures during 1961–1990 from 48 weather stations in Texas. It also contains geological locations of these stations in terms of longitude (long) and latitude (lat). The data set is available in library assist with the name TXtemp.

**A.22 Ultrasound Data**

Ultrasound imaging of the tongue provides real-time information about the shape of the tongue body at different stages in articulation. This data set comes from an experiment conducted in the Phonetics and Experimental Phonology Lab of New York University led by Professor Lisa Davidson. Three Russian speakers produced the consonant sequence, /gd/, in three different linguistic environments:

- **2words**: the g was at the end of one word followed by d at the beginning of the next word. For example, the Russian phrase *pab'eg damoj*;

- **cluster**: the g and d were both at the beginning of the same word. For example, the phrase *xot gdamam*;

- **schwa**: the g and d were at the beginning of the same word but are separated by the short vowel schwa (indicated by [ơ]). For example, the phrase *prətajitəgəda'voj*.

Details about the ultrasound experiment can be found in Davidson (2006). We use a subset from a single subject, with three replications for each environment, 15 points recorded from each of 9 slices of tongue curves separated by 30 ms (milliseconds). The data set contains four variables: **height** as tongue height in mm (millimeters), **length** as tongue length in mm, **time** as the time in ms and **env** as the environment with three levels: 2words, cluster, and schwa. The data set is available in library assist with the name ultrasound.
A.23 USA Climate Data

The data set contains average winter (December, January, and February) temperatures (temp) in 1981 from 1214 stations in the United States. It also contains geological locations of these stations in terms of longitude (long) and latitude (lat). The data set is available in library assist with the name USAtemp.

A.24 Weight Loss Data

The data set contains 52 observations on two variables, Weight in kilograms of a male obese patient, and Days since the start of a weight rehabilitation program. The data set is available in library MASS with the name wtloss.

A.25 WESDR Data

Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) is an epidemiological study of a cohort of diabetic patients receiving their medical care in an 11-county area in Southern Wisconsin. A number of medical, demographic, ocular, and other covariates were recorded at the baseline and later examinations along with a retinopathy score for each eye. Detailed descriptions of the study were given in Klein, Klein, Moss, Davis and DeMets (1988) and Klein, Klein, Moss, Davis and DeMets (1989). This subset contains 669 observations on five variables: num for subject ID, dur for duration of diabetes at baseline, gly for glycosylated hemoglobin, bmi for body mass index (weight in kilograms/(height in meters)$^2$), and prg for progression status of diabetic retinopathy at the first follow-up (1 for progression and 0 for nonprogression). The data set is available in library assist with the name wesdr.
A.26 World Climate Data

The data were obtained from the Carbon Dioxide Information and Analysis Center at Oak Ridge National Laboratory. The data set contains average winter (December, January, and February) temperatures (temp) in 1981 from 725 stations around the globe, and geological locations of these stations in terms of longitude (long) and latitude (lat). The data set is available in library assist with the name climate.
Appendix B

Codes for Fitting Strictly Increasing Functions

B.1 C and R Codes for Computing Integrals

The following functions k2 and k4 compute the scaled Bernoulli polynomials $k_2(x)$ and $k_4(x)$ in (2.27), and the function rc computes the RK of the cubic spline in Table 2.2:

```c
static double k2(double x) {
 double value;
 x = fabs(x);
 value = x - 0.5;
 value *= value;
 value = (value-1./12.)/2.;
 return(value);
}

static double k4(double x) {
 double val;
 x = fabs(x);
 val = x - 0.5;
 val *= val;
 val = (val * val - val/2. + 7./240.)/24.;
 return(val);
}

static double rc(double x, double y) {
 double value;
 value = k2(x) * k2(y)- k4 (x - y);
 return(value);
}
```
The following functions integral_s, integral_f, and integral_1 compute three-point Gaussian quadrature approximations to integrals 

\[ \int_0^x f(s)ds, \int_0^x f(s)R_1(s,y)ds, \text{ and } \int_0^x \int_0^y f(s)f(t)R_1(s,t)dsdt, \]

respectively, where \( R_1 \) is the RK of the cubic spline in Table 2.2:

```c
void integral_s(double *f, double *x, long *n, double *res)
{
 long i;
 double sum=0.0;

 for(i=0; i< *n; i++){
 sum += (x[i+1]-x[i])*(0.2777778*(f[3*i]+f[3*i+2])+
 0.4444444*f[3*i+1]);
 res[i] = sum;
 }
}

void integral_f(double *x, double *y, double *f,
 long *nx, long *ny, double *res)
{
 long i, j;
 double x1, y1, sum=0.0;

 for(i=0;i< *ny; i++){
 sum = 0.0;
 for(j=0; j< *nx; j++){
 x1 = x[j+1]-x[j];
 sum += x1*(0.2777778*(f[3*j]*
 rc(x[j]+x1*0.1127017, y[i])+
 f[3*j+2]*rc(x[j]+x1*0.8872983, y[i]))+
 0.44444444*f[3*j+1]*rc(x[j]+x1*0.5,y[i]));
 res[i*(*nx)+j] = sum;
 }
 }
}

void integral_1(double *x, double *y, double *f,
 long *n1, long *n2, double *res)
{
 long i, j, t, s;
 double x1, y1, sum=0.0, sum_tmp;

 for(i=0; i< *n1; i++){
 sum_tmp = 0.0;
 for(j=0; j< *n2; j++){
 x1 = x[j+1]-x[j];
 sum_tmp += x1*(0.2777778*(f[3*j]*
 rc(x[j]+x1*0.1127017, y[i])+
 f[3*j+2]*rc(x[j]+x1*0.8872983, y[i]))+
 0.44444444*f[3*j+1]*rc(x[j]+x1*0.5,y[i]));
 }
 res[i*(*n2)+j] = sum_tmp;
 }
}
```

x1 = x[i+1]-x[i];
sum = 0.0;
for(j=0; j< *n2; j++){
y1 = y[j+1]-y[j];
    sum_tmp = 0.2777778*0.2777778*(f[3*i]*f[3*j])*
            rc(x[i]+x1*0.1127017, y[j]+y1*0.1127017)+
    0.2777778*0.4444444*((f[3*i]*f[3*j+1])*
            rc(x[i]+x1*0.1127017, y[j]+y1*0.5)+
        (f[3*i+1]*f[3*j])*rc(x[i]+x1*0.5,y[j]+y1*0.1127017));
    sum_tmp += 0.4444444*0.4444444*((f[3*i+1]*f[3*j+1])*
            rc(x[i]+x1*0.5,y[j]+y1*0.5))+
    0.2777778*0.2777778*((f[3*i+2]*f[3*j+2])*
            rc(x[i]+x1*0.8872983, y[j]+ y1*0.8872983));
    sum_tmp += 0.2777778*0.2777778*((f[3*i]*f[3*j+2])*
            rc(x[i]+x1*0.1127017, y[j]+y1*0.8872983)+
        (f[3*i+2]*f[3*j])*rc(x[i]+x1*0.8872983,y[j]+y1*0.1127017))+
    0.4444444*0.2777778*((f[3*i+1]*f[3*j+2])*
            rc(x[i]+x1*0.5, y[j]+y1*0.8872983)+
        (f[3*i+2]*f[3*j+1])*rc(x[i]+x1*0.8872983, y[j]+y1*0.5));
    sum += sum_tmp*x1*y1;
    res[i*(*n2)+j] = sum;
}

The following R functions provide interface with the C functions
integral_s, integral_f, and integral_l:

```r
int.s <- function(f, x, low=0) {
 n <- length(x)
 x <- c(low, x)
 .C('integral_s', as.double(f), as.double(x),
 as.integer(n), val = double(n))$val
}

int.f <- function(x, y, f, low=0) {
 nx <- length(x)
 ny <- length(y)
 x <- c(low, x)
 res <- .C('integral_f', as.double(x),
 as.double(y), as.double(f), as.integer(nx),
 as.integer(ny), val=double(nx*ny))$val
 matrix(res, ncol=ny, byrow=F)
}
```
int1 <- function(x, f.val, low=0) {
  n <- length(x)
  x <- c(low, x)
  if(length(f.val) != 3 * n) stop('input not match')
  res <- matrix(.C('integral_1', as.double(x),
                   as.double(x), as.double(f.val), as.integer(n),
                   as.integer(n), val = double(n * n))$val, ncol = n)
  apply(res, 1, cumsum)
}

B.2 R Function inc

The following R function implements the EGN procedure for model (7.3).

inc <- function(y, x, spar='', grid=x, limnl=c(-6,0),
                prec=1.e-6, maxit=50, verbose=F)
{
  n <- length(x)
  org.ord <- match(1:n, (1:n)[order(x)])
  s.x <- sort(x)
  s.y <- y[order(x)]
  x1 <- c(0, s.x[-n])
  x2 <- s.x-x1
  q.x <- as.vector(rep(1,3)%o%x1+
                   c(0.1127017,0.5,0.8872983)%o%x2)

  # function for computing derivatives
  k1 <- function(x) x-.5
  k2 <- function(x) ((x-.5)^2-1/12)/2
  dk2 <- function(x) x-.5
  dk4 <- function(x)
    sign(x)*((abs(x)-.5)^3/6-(abs(x)-.5)/24)
  drkcub <- function(x,z)
    dk2(x)%o%k2(z)-
    dk4(x)%o%rep(1,length(z))-rep(1,length(x))%o%z)

  # compute starting value
  ini.fit <- ssr(s.y~I(s.x-.5), cubic(s.x))
  g.der <- ini.fit$coef%d[2]+drkcub(q.x,x)%o%ini.fit$coef$c
h.new <- abs(g.der)+0.005

# begin iteration
iter <- cover <- 1
h.old <- h.new
repeat {
  if(verb) cat('
Iteration: ', iter)
  yhat <- s.y-int.s(h.new*1-log(h.new)),s.x)
  smat <- cbind(int.s(h.new, s.x), int.s(h.new*q.x,s.x))
  qmat <- int1(s.x,h.new)
  fit <- ssr(yhat~smat, qmat, spar=spar, limnla=limnla)
  if(verb)
    cat('
Smoothing parameter: ', fit$rkpk$nlaht)
  dd <- fit$coef$d
  cc <- as.vector(fit$coef$c)
  h.new <- as.vector(exp(cc%*%int.f(s.x,q.x,h.new)+
    dd[2]+dd[3]*q.x))
  cover <- mean((h.new-h.old)^2)
  h.old <- h.new
  if(verb)
    cat('
Convergent Criterion: ', cover, '
')
  if(cover<prec || iter>(maxit-1)) break
  iter <- iter + 1
}
if(iter>=maxit) print('convergence not achieved!')
y.fit <- (smat[,1]+fit$rkpk$d[1])[org.ord]
f.fit <- as.vector(cc%*%int.f(s.x,grid,h.new)+
q.x <- as.vector(rep(1,3)%o%x1+
  c(0.1127017,0.5,0.8872983)%o%x2)
q.x <- as.vector(rep(1,3)%o%x1+
  c(0.1127017,0.5,0.8872983)%o%x2)
  h.new <- as.vector(exp(cc%*%int.f(s.x,q.x,h.new)+
    dd[2]+dd[3]*q.x))
  y.pre <- int.s(h.new,grid)+fit$rkpk$d[1]
  sigma <- sqrt(sum((y-y.fit)^2)/(length(y)-fit$df))
  list(fit=fit, iter=c(iter, cover),
    pred=list(x=grid,y=y.pre,f=f.fit),
    y.fit=y.fit, sigma=sigma)
}

where \( x \) and \( y \) are vectors of the independent and dependent variables; 
\( grid \) is a vector of grid points of the \( x \) variable used for assessing conve-
gence and prediction; and options `spar` and `liml` are similar to those in the `ssr` function. Let \( h(x) = g'(x) = \exp\{f(x)\} \). To get the initial value for the function \( f \), we first fit a cubic spline to model (7.1). Denote the fitted function as \( g_0 \). We then use \( \log(|g_0'(x)| + \delta) \) as the initial value for \( f \), where \( \delta = 0.005 \) is a small positive number for numerical stability. Since \( g_0(x) = d_1 \phi_1(x) + d_2 \phi_2(x) + \sum_{i=1}^n c_i R_1(x_i, x) \), we have \( g_0'(x) = d_2 + \sum_{i=1}^n c_i \partial R_1(x_i, x)/\partial x \), where \( \partial R_1(x_i, x)/\partial x \) is computed by the function `drkcub`. Functions \( k_1 \) and \( k_2 \) compute scaled Bernoulli polynomials defined in (2.27), and functions `dk2` and `dk4` compute \( k_2'(x) \) and \( k_4'(x) \), respectively. As a by-product, the line starting with `g.der` shows how to compute the first derivative for a cubic spline fit.
Appendix C

Codes for Term Structure of Interest Rates

C.1 C and R Codes for Computing Integrals

The following \texttt{rc} function computes the RK of the cubic spline in Table 2.1:

\begin{verbatim}
static double rc(double x, double y) {
    double val, tmp;
    tmp = (x+y-fabs(x-y))/2.0;
    val = (tmp)*(tmp)*(3.0*(x+y-tmp)-tmp)/6.0;
    return(val);
}
\end{verbatim}

In addition to the functions \texttt{integral_\_s}, \texttt{integral_\_f}, and \texttt{integral_\_1} presented in Appendix B, we need the following function \texttt{integral_\_2} for computing three-point Gaussian quadrature approximations to the integral \( \int_0^x \int_0^y f_1(s)f_2(t)R_1(s,t)dsdt \), where \( R_1 \) is the RK of the cubic spline in Table 2.1:

\begin{verbatim}
void integral_\_2(double *x, double *y, double *fx, double *fy, long *n1, long *n2, double *res) {
    long i, j, t, s;
    double x1, y1, sum=0.0, sum_tmp;
    for(i=0; i< *n1; i++){
        x1 = x[i+1]-x[i];
        sum = 0.0;
        for(j=0; j< *n2; j++){
            y1 = y[j+1]-y[j];
            sum_tmp = 0.2777778*0.2777778*(fx[3*i]*fy[3*j])*
                       rc(x[i]+x1*0.1127017, y[j]+y1*0.1127017)+
                       339
        }
    }
}\end{verbatim}
0.2777778*0.4444444*((fx[3*i]*fy[3*j+1])*
rc(x[i]+x1*0.1127017, y[j]+y1*0.5)+
(fx[3*i+1]*fy[3*j])*rc(x[i]+
x1*0.5, y[j]+y1*0.1127017));
sum_tmp += 0.4444444*0.4444444*((fx[3*i+1]*fy[3*j+1])*
rc(x[i]+x1*0.5, y[j]+y1*0.5)) + 0.2777778*0.2777778*
((fx[3*i+2]*fy[3*j+2])*rc(x[i]+x1*0.8872983, y[j]+y1*0.8872983));
sum_tmp += 0.2777778*0.2777778*0.2777778*0.2777778*0.2777778*0.2777778*
((fx[3*i+1]*fy[3*j+2])*rc(x[i]+x1*0.5, y[j]+y1*0.8872983)+
(fx[3*i+2]*fy[3*j+1])+rc(x[i]+x1*0.8872983, y[j]+y1*0.5)))
sum += sum_tmp*x1*y1;
res[i*(n2)+j] = sum;
}
}

Note that the rc function called inside integral.f, integral.1, and
integral.2 in this Appendix computes the RK $R_1$ of the cubic spline
in Table 2.1.
The following R functions provide interface with the C function
integral.2:

```r
int2 <- function(x, y, fx, fy, low.x=0, low.y=0) {
 nx <- length(x)
 ny <- length(y)
 if(((length(fx) != 3 * nx) || (length(fy) != 3 * ny))
 stop('input not match')
 x <- c(low.x, x)
 y <- c(low.y, y)
 res <- matrix(.C('integral.2', as.double(x),
 as.double(y), as.double(fx), as.double(fy),
 as.integer(nx), as.integer(ny), val=double(nx*ny))$val,
 ncol=ny, byrow=T)
 apply(res, 2, cumsum)
}
```

340  **Smoothing Splines: Methods and Applications**
C.2 R Function for One Bond

The following `one.bond` function implements the EGN algorithm to fit model (7.35):

```r
one.bond <- function(price, payment, time, name,
 spar='m', limnla=c(-3,6)) {
 # pre-processing the data
 # the data has to be sorted by the name
 group <- as.vector(table(name))
 y <- price[cumsum(group)]
 n.time <- length(time)

 # create variables for 3-point Gaussian quadrature
 s.time <- sort(time)
 x1.y <- c(0, s.time[-n.time])
 x2.y <- s.time-x1.y
 org.ord <- match(1:n.time, (1:n.time)[order(time)])
 q.time <- as.vector(rep(1,3)%o%x1.y +
 c(0.1127017, 0.5, 0.8872983)%o%x2.y)

 # initial values for f
 f0 <- function(x) rep(0.04, length(x))
 f.old <- f.val <- f0(q.time)

 # create s and q matrices
 S <- cbind(time,time*time/2.0)
 Lambda <- int1(s.time,
 rep(1,3*length(s.time)))[org.ord,org.ord]
 Lint <- int.f(s.time,q.time,
 rep(1,3*length(s.time)))[org.ord,]

 # begin iteration
 iter <- cover <- 1
 repeat {
 fint <- int.s(f.val,s.time)[org.ord]
 X <- assist:::diagComp(matrix(payment*exp(-fint),nrow=1),
 group)
 ytilde <- X%*%(1+fint)-y
 T <- X%*%S; Q <- X%*%Lambda%*%t(X)
 fit <- ssr(ytilde~T-1, Q, spar=spar, limnla=limnla)
 dd <- fit$coef$d; cc <- fit$coef$c
 }
```

---

*Codes for Term Structure of Interest Rates* 341
Smothing Splines: Methods and Applications

\[
\begin{align*}
  f.\text{val} & \leftarrow \text{as.vector}((cc\%*X)\%*\text{Lint}+dd[1]+dd[2]*q.\text{time}) \\
  \text{cover} & \leftarrow \text{mean}((f.\text{val}-f.\text{old})^2) \\
  \text{if}(\text{cover}<1.e-6 \quad \text{||} \quad \text{iter}>20) \quad \text{break} \\
  \text{iter} & \leftarrow \text{iter}+1; \quad f.\text{old} \leftarrow f.\text{val} \\
  \text{tmp} & \leftarrow \text{-int.s}(f.\text{val},s.\text{time})[\text{org.ord}] \\
  \text{yhat} & \leftarrow \text{apply(assist:::diagComp(matrix(payment*exp(tmp), nrow=1),group),1,sum)} \\
  \text{sigma} & \leftarrow \text{sqrt(sum((y-yhat)^2)/(length(y)-fit$df))} \\
  \text{list(fit=fit, \text{iter}=c(\text{iter, cover}), \text{call}=\text{match.call()}, f.\text{val}=f.\text{val}, \text{q.\text{time}=q.\text{time}, dc=exp(tmp)}, \text{y=list(y=y,yhat=yhat)}, \text{sigma=sigma})} \\
\end{align*}
\]

where variable names are self-explanatory.

C.3 R Function for Two Bonds

The following `two.bond` function implements the nonlinear Gauss–Seidel algorithm to fit model (7.36):

\[
\begin{align*}
  \text{two.bond} & \leftarrow \text{function(price, payment, time, name, type, spar='m', limnla=c(-3,6), prec=1.e-6, maxit=20) \{} \\
  \text{# pre-processing the data} \\
  \text{# the data in each group has to be sorted by the name} \\
  \text{group1} & \leftarrow \text{as.vector(table(name[type==''govt''])} \\
  \text{y1} & \leftarrow \text{price[type==''govt''][cumsum(group1)]} \\
  \text{time1} & \leftarrow \text{time[type==''govt'']} \\
  \text{n1.time} & \leftarrow \text{length(time1)} \\
  \text{payment1} & \leftarrow \text{payment[type==''govt'']} \\
  \text{group2} & \leftarrow \text{as.vector(table(name[type==''ge''])} \\
  \text{y2} & \leftarrow \text{price[type==''ge''][cumsum(group2)]} \\
  \text{time2} & \leftarrow \text{time[type==''ge'']} \\
  \text{n2.time} & \leftarrow \text{length(time2)} \\
  \text{payment2} & \leftarrow \text{payment[type==''ge'']} \\
  \text{y} & \leftarrow \text{c(y1, y2)} \\
  \text{group} & \leftarrow \text{c(group1, group2)} \\
  \text{payment} & \leftarrow \text{c(payment1, payment2)} \\
  \text{error} & \leftarrow 0 \\
  \text{# create variables for 3-point Gaussian quadrature} \\
\end{align*}
\]

s.time1 <- sort(time1)
x1.y1 <- c(0, s.time1[-n1.time])
x2.y1 <- s.time1-x1.y1
org.ord1 <- match(1:n1.time, (1:n1.time)[order(time1)])
q.time1 <- as.vector(rep(1,3)%o%x1.y1+
c(0.1127017,0.5,0.8872983)%o%x2.y1)
s.time2 <- sort(time2)
x1.y2 <- c(0, s.time2[-n2.time])
x2.y2 <- s.time2-x1.y2
org.ord2 <- match(1:n2.time, (1:n2.time)[order(time2)])
q.time2 <- as.vector(rep(1,3)%o%x1.y2+
c(0.1127017,0.5,0.8872983)%o%x2.y2)

# initial values for f
f10 <- function(x) rep(0.04, length(x))
f20 <- function(x) rep(0.01, length(x))
f.val1 <- f10(q.time1)
f.val2 <- f10(q.time2)
f.old <- c(f.val1,f.val2)
f.val2 <- f20(q.time2)
f.old <- f.val2

# create s and q matrices
S1 <- cbind(time1,time1*time1/2.0)
S2 <- cbind(time2,time2*time2/2.0)
L1 <- int1(s.time1,
rep(1,3*length(s.time1)))[org.ord1,org.ord1]
L2 <- int1(s.time2,
rep(1,3*length(s.time2)))[org.ord2,org.ord2]
L12 <- int2(s.time1,s.time2,rep(1,3*length(s.time1)),
rep(1,3*length(s.time2)))
L12 <- L12[org.ord1,org.ord2]
Lambda <- rbind(cbind(L1,L12),cbind(t(L12),L2))
Lint <- int.f(s.time1,c(q.time1,q.time2),
rep(1,3*length(s.time1)))[org.ord1,]
L2int <- int.f(s.time2,c(q.time1,q.time2),
rep(1,3*length(s.time2)))[org.ord2,]
Lint <- rbind(Lint,L2int)
L2int2 <- int.f(s.time2,q.time2,
rep(1,3*length(s.time2)))[org.ord2,]

# begin iteration
iter <- cover <- 1
repeat {
  # update f1
  f1int1 <- int.s(f1.val1,s.time1)[org.ord1]
  f1int2 <- int.s(f1.val2,s.time2)[org.ord2]
  f2int2 <- int.s(f2.val2,s.time2)[org.ord2]
  X <- assist:::diagComp(matrix(payment*exp(-c(f1int1,f1int2+f2int2)),nrow=1),group)
  ytilde1 <- X%*%1+c(f1int1,f1int2)-y
  T <- X%*%rbind(S1,S2)
  Q <- X%*%Lambda%*%t(X)
  fit1 <- try(ssr(ytilde1~T-1,Q,spar=spar,limnla=limnla))
  if (class(fit1)=="try-error") {error=1; break}
  if (class(fit1)!='try-error') {
    dd <- fit1$coef$d; cc <- fit1$coef$c
    f1.val <- as.vector((cc%*%X)%*%Lint+dd[1]+dd[2]*c(q.time1,q.time2))
    f1.val1 <- f1.val[1:(3*n1.time)]
    f1.val2 <- f1.val[-(1:(3*n1.time))]
  }

  # update f2
  f1int2 <- int.s(f1.val1,s.time1)[org.ord2]
  X2 <- assist:::diagComp(matrix(payment2*exp(-f1int2-f2int2),nrow=1),group2)
  ytilde2 <- X2%*%(1+f2int2)-y2
  T2 <- X2%*%L2
  Q22 <- X2%*%L2%*%t(X2)
  fit2 <- try(ssr(ytilde2~T2-1,Q22,spar=spar,limnla=limnla))
  if (class(fit2)=="try-error") {error=1; break}
  if (class(fit2)!='try-error') {
    dd <- fit2$coef$d; cc <- fit2$coef$c
    f2.val2 <- as.vector((cc%*%X2)%*%L2int2+dd[1]+dd[2]*q.time2)
  }

  cover <- mean((c(f1.val1,f1.val2,f2.val2)-c(f1.old, f2.old))^2)
  if(cover<prec || iter>maxit) break
  iter<- iter + 1
  f1.old <- c(f1.val1,f1.val2)
  f2.old <- f2.val2
}

tmp1 <- -int.s(f1.val1,s.time1)[org.ord1]
tmp2 <- -int.s(f1.val2+f2.val2,s.time2)[org.ord2]
yhat <- apply(assist:::diagComp(matrix(payment*  
  exp(c(tmp1,tmp2)),nrow=1),group),1,sum)
sigma <- NA
if (error==0) sigma <- sqrt(sum((y-yhat)^2)/  
  (length(y)-fit1$df-fit2$df))
list(fit1=fit1, fit2=fit2, iter=c(iter, cover, error),  
  call=match.call(),  
  f.val=list(f1=f1.val1,f2=f1.val2+f2.val2),  
  f2.val=f2.val2,  
  q.time=list(q.time1=q.time1,q.time2=q.time2),  
  dc=list(dc1=exp(tmp1),dc2=exp(tmp2)),  
  y=list(y=y,yhat=yhat), sigma=sigma)
}

The matrices $S_1$, $S_2$, $T$, $T_2$, $L_1$, $L_2$, $L_{12}$, and $Q$ represent $S_1$, $S_2$, $T$, $T_2$,  
$\Lambda_1$, $\Lambda_2$, $\Lambda_{12}$, and $\Sigma$ respectively, in the description about the Gauss–  
Seidel algorithm for model (7.36) in Section 7.6.3. In the output, $f_1$ and $f_2$ in the list $f.val$ contain estimated forward rates for two bonds  
evaluated at time points $q.time1$ and $q.time2$ in the list $q.time$; $f2.val$ contains estimated credit spread evaluated at time points $q.time2$; and  
dc1 and dc2 in the list dc contain estimated discount rates for two bonds  
evaluated at the observed time points.
References


References


References


References


References


References


A general class of powerful and flexible modeling techniques, spline smoothing, has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. **Smoothing Splines: Methods and Applications** covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference.

The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models. **Smoothing Splines** offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book’s web page.