Pre-existing diabetes mellitus increases the risk of gastric cancer: A meta-analysis

Jae Moon Yoon, Ki Young Son, Chun Sick Eom, Daniel Durrance, Sang Min Park

Jae Moon Yoon, Sang Min Park, Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, South Korea
Ki Young Son, Center for Health Promotion, Seoul National University Hospital, Seoul 110-744, South Korea
Chun Sick Eom, Department of Family Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 200-704, South Korea
Daniel Durrance, Family Medicine, Graduate School of Korea University College of Medicine, Seoul 110-799, South Korea

Author contributions: Yoon JM and Son KY have contributed equally to this article; Yoon JM and Son KY designed study, analyzed data and wrote manuscript; Eom CS contributed discussion and wrote manuscript; Durrance D edited manuscript; Park SM designed study, contributed discussion and edited manuscript.

Supported by Grant from the Seoul National University Hospital Research Fund, No. 04-2011-0540

Correspondence to: Dr. Sang Min Park, Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, South Korea. sangminpark.snuh@gmail.com
Telephone: +82-2-20723331 Fax: +82-2-7663276
Received: August 18, 2012 Revised: October 22, 2012 Accepted: October 30, 2012 Published online: February 14, 2013

Abstract
AIM: To systematically assess the association between diabetes and incidence of gastric cancer.

METHODS: We searched MedLine (PubMed), EMBASE, and the Cochrane Library without any limitations with respect to publication date or language, we also searched the references of qualifying articles. Case-control studies and cohort studies comparing the risk of gastric cancer between diabetic patients and control subjects were included. We excluded studies reporting only standardized incidence ratios without control groups and those that investigated only mortality but not incidence. Seventeen studies met our criteria, and the qualities of these studies were assessed using the Newcastle-Ottawa Quality Assessment Scale. We performed a meta-analysis of pre-existing diabetes and gastric cancer incidence using the DerSimonian-Laird method for random-effects. For subgroup analyses, we separated the studies by study type, region, sex and method to determine confounding factors and reliability. We also conducted subgroup analyses to examine the effects of smoking, Helicobacter pylori (H. pylori) infection, and cancer site. Publication bias was evaluated using Begg’s test.

RESULTS: A random-effects model meta-analysis showed an increased gastric cancer risk in diabetic patients [relative risk (RR) = 1.19; 95%CI: 1.08-1.31]. Subgroup analyses indicated that this result persisted in cohort studies (RR = 1.20; 95%CI: 1.08-1.34), in studies on populations of both Western (RR = 1.18; 95%CI: 1.03-1.36) and Eastern countries (RR = 1.19; 95%CI: 1.02-1.38), in a female subgroup (RR = 1.24; 95%CI: 1.01-1.52), and in highly qualified studies (RR = 1.17; 95%CI: 1.05-1.31). Moreover, these results persisted when the analysis was confined to studies adjusted for well-known gastric cancer risk factors such as smoking (RR = 1.17; 95%CI: 1.01-1.34) and H. pylori infection (RR = 2.35; 95%CI: 1.24-4.46).

CONCLUSION: Pre-existing diabetes mellitus may increase the risk of gastric cancer by approximately 19%. This effect seems to be unrelated to geographical region.

© 2013 Baishideng. All rights reserved.

Key words: Disease association; Diabetes mellitus; Gastric cancer; Incidence; Risk; Meta-analysis

INTRODUCTION

Diabetes mellitus is currently an epidemic. Approximately 171 million individuals worldwide had diabetes mellitus in 2000, and it is estimated that 366 million people will have diabetes by 2030, which corresponds to nearly 4.5% of the global population[1]. The estimated prevalence of diabetes among adults in the United States currently ranges from 5.9% to 12.4% (median 8.3%)[2], and some cancers, such as colorectal, endometrial, breast, liver, and pancreatic cancer, are reportedly more prevalent in diabetes patients[3-7]. Diabetes mellitus has also been associated with an increased risk of long-term and all-cause mortality in cancer patients[8].

Although the incidence and associated mortality of gastric cancer is decreasing, it remains the fourth most common cancer and the second leading cause of cancer-related mortality worldwide[9]. Despite the success in gastric cancer control, the persistence of the public health burden of gastric cancer indicates the need to expand efforts to identify and address the individual and social determinants of the disease. The public health significance of a potential causal link between diabetes mellitus and gastric cancer highlights the need for a systematic assessment of the association between these 2 diseases.

Therefore, several systematic reviews have recently been performed to examine the above mentioned associations. One review suggested that diabetic individuals have an increased risk of gastric cancer[9]. However, this review had some limitations as it included studies without control groups[10-14] and excluded appropriate studies[15,16]. Two other reviews showing inconclusive results[17,18] did not include any recent studies[19,20], and did not differentiate between “incidence” and “mortality” in terms of describing the risk[17]. Such methodological weaknesses of the previous meta-analysis made it difficult to understand the association between preexisting diabetes mellitus and the risk of gastric cancer.

In the present study, we aimed to clarify the association between diabetes and gastric cancer through an extensive search of the literature, which we reviewed using strict criteria.

MATERIALS AND METHODS

Methods

The procedures performed in this meta-analysis are in accordance with recent guidelines for the reporting of meta-analysis (PRISMA guidelines).

Data sources and searches

We conducted a systematic search of electronic databases and the bibliographies of all eligible studies to identify all relevant studies. We initiated the search on February 7, 2012 without any limitations with respect to publication date or language. The electronic databases searched included MedLine (PubMed), EMBASE, and the Cochrane Library. The search strategy included terms for diabetes (glucose, diabetes, or hyperglycemia), gastric cancer (stomach cancer, gastric cancer, stomach malignant neoplasm, or gastric malignant neoplasm), and risk (incidence, prevalence, or risk). We also searched the references of included articles.

Study selection

Case-control studies, cohort studies, and randomized controlled trials comparing the risk of gastric cancer between diabetic patients and control subjects were eligible for inclusion. We included studies evaluating self-reported diabetes, registered diabetes, and high HbA1c and blood glucose levels. To be included in our meta-analysis, articles had to contain both of the following: (1) a risk estimate (hazard ratio, relative risk, or odds ratio relating preexisting diabetes to subsequent occurrences of gastric cancer); and (2) an estimate of precision (standard error or 95% CI). We also included articles that failed to report precision directly, but from which we could reconstruct a precision estimate using the data described[21,22]. We excluded studies reporting only standardized incidence ratios without control groups. We also excluded studies that investigated only mortality without incidence and studies in which the classification of the subjects’ diabetes status (diabetic or non-diabetic) was not possible due to insufficient ranges in blood glucose levels. Studies were excluded if either the abstract or the full text was unavailable after author contact was made.

Data extraction and quality assessment

The titles, abstracts, and full articles were reviewed independently by two authors (Yoon JM and Son KY). Yoon JM performed a full abstraction of the data, and Son KY verified the accuracy. Disagreements were resolved by discussion, consensus, and arbitration by a third author (Park SM). Abstracted data included type of study, study population characteristics, criteria for diabetes mellitus or hyperglycemia, duration of follow-up, incidence of cancer, adjustment variables, and study quality. Quality was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control or cohort studies.

Statistical analysis

To avoid overlapping patient populations, we compared data sources and geographic locations. If a patient population was found to overlap, we included the article with the most comprehensive population or the most adjusted risk estimate associated with preexisting diabetes. If an article reported estimates separately by sex[13,19,20,29] or by different cohorts[16], we regarded the study as 2 independent studies. If an article did not report the risk ratio and confidence interval, we estimated the risk using Fisher’s exact test without adjustment[20,22], and the estimates were rounded off to the nearest hundredth. In case-control studies, odds ratios were regarded as relative risks because of the low prevalence of gastric cancer[10,31].

For the meta-analysis, we calculated pooled estimates for all the studies. For the subgroup analyses, we separated studies by study type, region, sex, and method to determine the confounding factors and reliability. We also
Yoon JM et al. Diabetes mellitus and gastric cancer risk

Identified studies from the databases using keywords of relevant articles (n = 2361):
PubMed (405), EMBASE (1935), Cochrane (12), Bibliographies (9)

Excluded duplicate articles (n = 255)

Excluded (n = 1996):
Titles were not relevant for the end point of the study (1995), no available abstract (1)

Abstracts selected for review by 2 reviewer (n = 110)

Excluded (n = 73):
Different topics (58), review articles (4), not relevant contents (6), commentary (3), animal study (1), no available full text (1)

Articles remaining after excluding duplicates (n = 2106)

Studies selected for full review by 2 reviewers (n = 37)

Excluded (n = 20):
Subset of same subjects (1), commentary of same study (1), unlimited to preexisting diabetes (1), incomplete data (17) [reporting standardized incidence ratio without control group (7), hyperglycemia (no diabetic range) (2), no data about incidence of cancer (5), no estimate comparing between diabetes and control groups (2), no separation between esophageal and gastric cancer (1)]

Studies included in meta-analysis (n = 17):
Cohort studies (11), case-control studies (6)

Figure 1 Flow diagram of studies identified and selected.

carried out subgroup analyses to examine the effects of smoking, *Helicobacter pylori* (*H. pylori*) infection, and cancer site, which are major factors influencing the risk of gastric cancer. We calculated all the pooled estimates using the DerSimonian-Laird method for random effects. We also reported *I*² values for heterogeneity assessment. Publication bias was evaluated using Beggs’s test. All analyses were conducted using Stata software (version 12.1, StataCorp, United States).

RESULTS

The systematic literature search identified 2361 relevant references (Figure 1). After screening the titles, we excluded 255 duplicated and 1996 non-relevant studies. By reviewing the abstracts, we further excluded 73 articles. The full texts of the 37 remaining articles were retrieved for formal review. After independent review, 20 studies were excluded; 2 studies used the same populations as another trial, and 1 did not limit the exposure group to individuals with preexisting diabetes. Seventeen studies reported only limited data (uncertain diabetes diagnosis, usage of a standardized incidence ratio, lack of an acceptable control group, reporting of only mortality data, and uncertain gastric cancer diagnosis). Table 1 provides the details of the 17 studies that met our predefined inclusion and exclusion criteria. In total, 11 cohort and 6 case-control studies were used. We were unable to find any suitable randomized control trials.

Description of studies

The 17 articles included in our analysis were heterogeneous in many respects. Geographically, 6 studies were conducted in East Asia, 1 in West Asia, 5 in North America, and 5 in Europe. According to the cohort studies, the prevalence of diabetes varied from 3.0% to 13.2%. Four studies used measurement criteria to define diabetes mellitus, and 2 studies differentiated between gastric cardia and non-cardia cancer. The reporting of age and follow-up time varied widely. In 13 studies, a time interval of more than 1 year between the diagnoses of diabetes and cancer was required in order to minimize reverse causality, although 2 studies showed only the estimates without time intervals. Quality varied from 4 to 9 stars according to the NOS, but 3 studies were downgraded because we used recalculated estimates without adjusting for pooled analysis. After downgrading, the mean NOS score was 7.3. We therefore conducted subgroup analysis according to methodological quality (with “high-quality” defined as a score of ≥ 8).

Fifteen studies included both sexes and 10 reported data separated by sex. In one of the latter, fewer than 5 female patients were diagnosed with both diabetes mellitus and subsequent gastric cancer; the estimate was therefore not reported. In total, we found 28 independent groups separated by sex and cohort, and we yielded 27 eligible estimates. Only 2 studies described the specific risk ratios of cardia and non-cardia gastric cancers.

Overall

As shown in Figure 2, diabetes mellitus was associated with a significantly increased risk of gastric cancer in all included studies using random effects model analysis (relative risk (RR) = 1.19; 95%CI: 1.08-1.31; *I*² = 70.7%; 95%CI: 56.8%-80.2%).

Subgroup meta-analysis

We examined methodological differences when determining the quality of the studies. According to Figure 2, subgroup meta-analysis by study design revealed significant associations in cohort studies (RR = 1.20; 95%CI: 1.08-1.34), while the results of case-control studies were not statistically significant. Positive associations were observed in more reliable subgroup studies using the registration record or laboratory measurements as diabetes criteria and studies that were highly graded by NOS. A subgroup meta-analysis of studies designed to minimize reverse causality, including the shortest cancer-free interval, indicated that diabetes seemed to increase subsequent gastric cancer (Table 2).

Regional and gender-based differences are presented in Table 2. East Asian (RR = 1.19; 95%CI: 1.02-1.38) and Western studies (RR = 1.18; 95%CI: 1.03-1.36) showed
<table>
<thead>
<tr>
<th>Study type</th>
<th>Country</th>
<th>Sex</th>
<th>Age interval (yr)</th>
<th>Follow up (yr)</th>
<th>Last interval (yr)</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS, CC, NCC</td>
<td>United States</td>
<td>Male</td>
<td>30-89</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CS, CC, NCC</td>
<td>United States</td>
<td>Male</td>
<td>40-79</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CS, CC, NCC</td>
<td>United States</td>
<td>Female</td>
<td>40-79</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CS, CC, NCC</td>
<td>United States</td>
<td>Both</td>
<td>40-79</td>
<td>10</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1 Characteristics of 15 studies included in the meta-analysis of the gastric cancer risk of preexisting diabetes

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Sex</th>
<th>Age interval (yr)</th>
<th>Follow up (yr)</th>
<th>Last interval (yr)</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atchison et al.</td>
<td>United States</td>
<td>Male</td>
<td>30-89</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Atchison et al.</td>
<td>United States</td>
<td>Female</td>
<td>30-89</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Atchison et al.</td>
<td>United States</td>
<td>Both</td>
<td>30-89</td>
<td>10</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Atchison et al.</td>
<td>United States</td>
<td>Both</td>
<td>30-89</td>
<td>10</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1 continued...
Yoon JM et al. Diabetes mellitus and gastric cancer risk

<table>
<thead>
<tr>
<th>Study</th>
<th>RR (95%CI)</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atchison et al[21]</td>
<td>0.95 (0.89, 1.02)</td>
<td>8.35</td>
</tr>
<tr>
<td>Carstensen et al[22], male</td>
<td>1.28 (1.15, 1.43)</td>
<td>7.85</td>
</tr>
<tr>
<td>Carstensen et al[22], female</td>
<td>1.34 (1.14, 1.58)</td>
<td>7.00</td>
</tr>
<tr>
<td>Lin et al[23], male</td>
<td>1.52 (1.21, 1.92)</td>
<td>5.86</td>
</tr>
<tr>
<td>Lin et al[23], female</td>
<td>1.62 (0.98, 2.68)</td>
<td>2.63</td>
</tr>
<tr>
<td>Wotton et al[24], ORLS1</td>
<td>1.11 (0.89, 1.37)</td>
<td>6.11</td>
</tr>
<tr>
<td>Wotton et al[24], ORLS2</td>
<td>2.05 (1.30, 3.10)</td>
<td>3.20</td>
</tr>
<tr>
<td>Chodick et al[25], male</td>
<td>1.44 (0.98, 2.11)</td>
<td>3.72</td>
</tr>
<tr>
<td>Chodick et al[25], female</td>
<td>0.99 (0.55, 1.80)</td>
<td>2.07</td>
</tr>
<tr>
<td>Ikeda et al[26]</td>
<td>2.69 (1.24, 5.85)</td>
<td>1.34</td>
</tr>
<tr>
<td>Ogunleye et al[27]</td>
<td>0.77 (0.36, 1.66)</td>
<td>1.38</td>
</tr>
<tr>
<td>Inoue et al[28], male</td>
<td>1.09 (0.79, 1.50)</td>
<td>4.50</td>
</tr>
<tr>
<td>Inoue et al[28], female</td>
<td>1.92 (1.06, 3.47)</td>
<td>2.07</td>
</tr>
<tr>
<td>Khan et al[29], male</td>
<td>0.72 (0.40, 1.09)</td>
<td>2.65</td>
</tr>
<tr>
<td>Khan et al[29], female</td>
<td>0.26 (0.08, 0.82)</td>
<td>0.65</td>
</tr>
<tr>
<td>Rapp et al[30], male</td>
<td>0.84 (0.38, 1.87)</td>
<td>1.28</td>
</tr>
<tr>
<td>Jee et al[31], male</td>
<td>1.11 (1.04, 1.20)</td>
<td>8.31</td>
</tr>
<tr>
<td>Jee et al[31], female</td>
<td>1.15 (0.99, 1.34)</td>
<td>7.20</td>
</tr>
<tr>
<td>Subtotal ((I^2 = 75.5%))</td>
<td>1.20 (1.08, 1.34)</td>
<td>76.20</td>
</tr>
<tr>
<td>Case-control study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jiang et al[32]</td>
<td>1.51 (1.10, 2.07)</td>
<td>4.56</td>
</tr>
<tr>
<td>Kuriki et al[33], male</td>
<td>1.16 (0.93, 1.44)</td>
<td>6.06</td>
</tr>
<tr>
<td>Kuriki et al[33], female</td>
<td>1.70 (1.16, 2.48)</td>
<td>3.76</td>
</tr>
<tr>
<td>Jun et al[34]</td>
<td>1.77 (0.57, 5.45)</td>
<td>0.69</td>
</tr>
<tr>
<td>Rousseau et al[35]</td>
<td>1.00 (0.50, 1.80)</td>
<td>1.84</td>
</tr>
<tr>
<td>La Vecchia et al[36], male</td>
<td>0.60 (0.40, 1.00)</td>
<td>2.99</td>
</tr>
<tr>
<td>La Vecchia et al[36], female</td>
<td>0.70 (0.40, 1.20)</td>
<td>2.32</td>
</tr>
<tr>
<td>O’Mara et al[37], male</td>
<td>0.91 (0.28, 2.27)</td>
<td>0.79</td>
</tr>
<tr>
<td>O’Mara et al[37], female</td>
<td>1.57 (0.48, 3.94)</td>
<td>0.79</td>
</tr>
<tr>
<td>Subtotal ((I^2 = 57.9%))</td>
<td>1.12 (0.87, 1.45)</td>
<td>23.80</td>
</tr>
<tr>
<td>Overall ((I^2 = 70.7%))</td>
<td>1.19 (1.08, 1.31)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 2 Meta-analysis and pooled relative risk of gastric cancer comparing non-cancer population with and without preexisting diabetes mellitus by random effect model. ORLS: Oxford Record Linkage Study.

Cigarette smoking status was similar to the overall results (RR = 1.17; 95%CI: 1.01-1.34). The pooled estimate adjusted for H. pylori infection was greater than the overall estimate (RR = 2.35; 95%CI: 1.24-4.46). Nevertheless, subgroup analyses on either cardia or noncardia cancer did not produce significant results.

Publication bias
Begg’s test indicated no publication bias in our analysis (Figure 3).

DISCUSSION

Summary of results
We found a significant association between preexisting diabetes and gastric cancer incidence. In diabetic patients, we found that the risk of subsequent gastric cancer incidence was increased by approximately 19%, and this effect was significant in women. The subgroups of cohort, Western and Eastern studies, showed similar results. These results persisted in studies using self-reported criteria and those adjusted for known risk factors such as cigarette smoking and H. pylori infection.

Explanations
We observed some discrepancy between our analysis and previous meta-analysis. Three previous meta-analysis have explored the association between diabetes and gastric cancer incidence. One of these, a meta-analysis of cohort studies[30], produced a misleading result due to the exclusion of appropriate cohort studies[15,16,19,20] and the inclusion of a study using a glucose level that was not clearly defined and an unrepresentative range of diabetes mellitus[39]. The study also presented an incomprehensible method for summarizing 2 estimates of cardia and noncardia cancer from the same control group. A different study[17] used the term “risk” without a distinction between incidence and mortality. This methodological weakness made the result heterogeneous and biologically implausible. Another meta-analysis[30] also excluded several recent studies[14,16,19,20] and included studies reporting a standardized incidence ratio without quality assessment.

To supplement the previous insufficient meta-analyses, we restricted inclusion in our analysis to studies reporting a risk ratio compared to a control group, and we assessed the quality of these studies using various criteria. As a result, we found that diabetes and the risk of gastric cancer...
cancer were positively associated with each other. This positive association may be reliable based on consistent results from well-designed studies including cohort studies, studies of high quality based on assessment with the NOS, studies examining the time interval between onset of diabetes and subsequent gastric cancer, and studies using objective diabetic criteria (diabetes registry or laboratory measurements) that were adjusted based on important factors (smoking or *H. pylori* infection). Although a time interval of 1 year between diabetes and gastric cancer may be insufficient evidence of a causal relationship, we were able to minimize the reverse causality.

Regarding biological plausibility, the results of this study are consistent with previous studies in which pre-existing diabetes was associated with an increased risk of a variety of cancers. The oncogenic properties of diabetes have been well documented. The increased insulin concentration in early diabetes can stimulate cell proliferation through activation of the insulin receptor or insulin-like growth factor-I receptor (IGF-IR) and the inhibition of IGF binding proteins, which may result in increased free bioavailable IGF-I [58,59]. Additionally, a high level of serum IGF-I has been demonstrated to increase the risk for development of several carcinomas including gastrointestinal carcinomas [39]. Exogenous IGFs stimulate the proliferation of gastric cancer cells, while the blocking of IGF-IR inhibits tumor development [60,61].

Vascular endothelial growth factor (VEGF), the levels of which are increased in the blood of diabetic patients [20], is another cytokine that is related to the oncogenic properties of diabetes. VEGF is correlated with tumor vascularity and the frequency of hepatic metastasis, and it induces the proliferation and dilation of lymphatics culminating in node metastasis [62-64]. Moreover, the IGF/IGF-IR axis has also been shown to interact with the VEGF/VEGFR system in various tumors including gastrointestinal malignancies [65,66]. DNA damage in diabetic patients is another potential mechanism of oncogenesis. The increased production of reactive oxygen species could result in greater oxidative damage to DNA [66]. Furthermore, in an experimental study, high blood glucose levels were shown to directly induce DNA damage [67].

While we found that the association between diabetes and gastric cancer persisted irrespective of *H. pylori* infection, it nevertheless seems probable that diabetes and *H. pylori* infection, which is a known risk factor for gastric cancer, work synergistically to increase the risk of gastric cancer. Indeed, a previous cohort study in Japan demonstrated that a high HbA1c level and a concomitant *H. pylori* infection increased the gastric cancer risk synergistically [37]. It is possible that reactive oxygen-dependent DNA damage enhances the modifying effect of *H. pylori* on epithelial cell proliferation.

To confirm this synergistic effect, we also performed subgroup analyses by cancer site. Although noncardia gastric cancers were known to be strongly associated with *H. pylori* infection [70,71], we failed to show a similar relationship between diabetes mellitus and specific sites of gastric cancer. As further studies dealing with site-specific data are performed, a reassessment will be required.

Potential confounders

A positive association between diabetes and gastric cancer incidence was observed among women but not among men. These results must be interpreted carefully as there were only a few studies differentiating men and women. Sex hormones could represent one possible reason for this difference. In breast cancer, it is well established that...
estrogen and IGF-1 interactively affect cell proliferation[26]. Gastrointestinal tissues, whether normal or cancerous, contain estrogen receptor β, and estrogen can bind to them[30,74]. Through an undefined mechanism, estrogen levels in diabetic women could influence or stimulate the proliferation of gastric cancer cells.

This gender-based difference could also be due to disparate methods of diabetes intervention. Metformin[46,78], aspirin[50,77], and statins[78] are known to protect against a number of cancers, while insulin is reported to increase the risk of several cancers[77]. Although gender differences in this matter were not explored in many previous studies, clues were obtained from the following studies: One study suggested that gender differences in adherence to diabetes management were minimal[65]. However, an Italian study reported that diabetic women were more likely to use insulin than men[93]. According to an American study, men use statins more frequently in type 2 diabetes mellitus[80]. These factors, however small, might contribute to the above-mentioned gender differences.

Limitations

Our study has several limitations. First, the studies we examined were highly heterogeneous. In particular, diabetes mellitus was defined by various methods and cut-off values. Diabetic prevalence and subject age also differed. Second, dietary food factors such as salt, nitrite[82,83], and fresh vegetable[84] intake could not be considered in the analysis despite being potential confounders. Finally, the selected studies contained no details regarding diabetes interventions that were sufficient to adjust for the effects of diabetes treatments.

In conclusion, despite the limitations, our meta-analysis suggests that preexisting diabetes mellitus may increase the risk of gastric cancer. Further prospective studies assessing confounders such as diabetes interventions are needed to specifically test the effects of diabetes mellitus on gastric cancer risk.

REFERENCES

Yoon JM et al. Diabetes mellitus and gastric cancer risk

Bershtein LM. Merabishvili VM, Semenova KN, Karpova
Yoon JM et al. Diabetes mellitus and gastric cancer risk

Tseng CH. Diabetes conveys a higher risk of gastric cancer mortality despite an age-standardised decreasing trend in the general population in Taiwan. Gut 2011; 60: 774-779 [PMID: 2193459 DOI: 10.1136/gut.2010.226522]

